Loading…
NONPARAMETRIC MULTI-LEVEL CLUSTERING OF HUMAN EPILEPSY SEIZURES
Understanding neuronal activity in the human brain is an extremely difficult problem both in terms of measurement and statistical modeling. We address a particular research question in this area: the analysis of human intracranial electroencephalogram (iEEG) recordings of epileptic seizures from a c...
Saved in:
Published in: | The annals of applied statistics 2016-06, Vol.10 (2), p.667-689 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding neuronal activity in the human brain is an extremely difficult problem both in terms of measurement and statistical modeling. We address a particular research question in this area: the analysis of human intracranial electroencephalogram (iEEG) recordings of epileptic seizures from a collection of patients. In these data, each seizure of each patient is defined by the activities of many individual recording channels. The modeling of epileptic seizures is challenging due the large amount of heterogeneity in iEEG signal between channels within a particular seizure, between seizures within an individual, and across individuals. We develop a new nonparametric hierarchical Bayesian model that simultaneously addresses these multiple levels of heterogeneity in our epilepsy data. Our approach, which we call a multi-level clustering hierarchical Dirichlet process (MLC-HDP), clusters over channel activities within a seizure, over seizures of a patient and over patients. We demonstrate the advantages of our methodology over alternative approaches in human EEG seizure data and show that its seizure clustering is close to manual clustering by a physician expert. We also address important clinical questions like "to which seizures of other patients is this seizure similar?" |
---|---|
ISSN: | 1932-6157 |
DOI: | 10.1214/15-AOAS851 |