Loading…

NONPARAMETRIC MULTI-LEVEL CLUSTERING OF HUMAN EPILEPSY SEIZURES

Understanding neuronal activity in the human brain is an extremely difficult problem both in terms of measurement and statistical modeling. We address a particular research question in this area: the analysis of human intracranial electroencephalogram (iEEG) recordings of epileptic seizures from a c...

Full description

Saved in:
Bibliographic Details
Published in:The annals of applied statistics 2016-06, Vol.10 (2), p.667-689
Main Authors: Wulsin, Drausin F., Jensen, Shane T., Litt, Brian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Understanding neuronal activity in the human brain is an extremely difficult problem both in terms of measurement and statistical modeling. We address a particular research question in this area: the analysis of human intracranial electroencephalogram (iEEG) recordings of epileptic seizures from a collection of patients. In these data, each seizure of each patient is defined by the activities of many individual recording channels. The modeling of epileptic seizures is challenging due the large amount of heterogeneity in iEEG signal between channels within a particular seizure, between seizures within an individual, and across individuals. We develop a new nonparametric hierarchical Bayesian model that simultaneously addresses these multiple levels of heterogeneity in our epilepsy data. Our approach, which we call a multi-level clustering hierarchical Dirichlet process (MLC-HDP), clusters over channel activities within a seizure, over seizures of a patient and over patients. We demonstrate the advantages of our methodology over alternative approaches in human EEG seizure data and show that its seizure clustering is close to manual clustering by a physician expert. We also address important clinical questions like "to which seizures of other patients is this seizure similar?"
ISSN:1932-6157
DOI:10.1214/15-AOAS851