Loading…
Effects of Nicorandil on Experimentally Induced Gastric Ulcers in Rats: A Possible Role of KATP Channels
The anti-ulcer effects of nicorandil [N-(2-hydroxyethyl)nicotinamide nitrate ester] were examined on water-immersion plus restraint stress-induced and aspirin-induced gastric ulcers in rats, compared with those of cimetidine. Nicorandil (3 and 10 mg/kg) given orally to rats dose-dependently inhibite...
Saved in:
Published in: | Japanese journal of pharmacology 1999, Vol.79(1), pp.51-57 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The anti-ulcer effects of nicorandil [N-(2-hydroxyethyl)nicotinamide nitrate ester] were examined on water-immersion plus restraint stress-induced and aspirin-induced gastric ulcers in rats, compared with those of cimetidine. Nicorandil (3 and 10 mg/kg) given orally to rats dose-dependently inhibited the development of acid-related damage (water-immersion- and aspirin-induced gastric lesions) in the models. Cimetidine (50 mg/kg, p.o.) also had anti-ulcer effects in the same models. However, in the presence of glibenclamide (20 mg/kg, i.v.), an antagonist of KATP channels, nicorandil did not inhibit the formation of gastric lesions. Nicorandil (10 mg/kg) given intraduodenally (i.d.), like cimetidine (50 mg/kg), significantly reduced the volume of the gastric content, total acidity and total acid output in the pylorus ligation model. Glibenclamide reversed the changes caused by i.d. nicorandil. I.v. infusion of nicorandil (20 μg/kg per min) significantly increased gastric mucosal blood flow, without affecting blood pressure and heart rate, but the increase in the blood flow was not observed after i.v. treatment with glibenclamide (20 mg/kg). These results indicate that nicorandil administered orally to rats produces the anti-ulcer effect by reducing the aggressive factors and by enhancing the defensive process in the mucosa through its KATP-channel-opening property. |
---|---|
ISSN: | 0021-5198 1347-3506 |
DOI: | 10.1254/jjp.79.51 |