Loading…
CFD Model for Lift Force in a Wall-Bounded Flow
The modeling of the lift force in high shear rate pipe flow is an essential issue for the estimation of the droplet dispersion. The analytical models used in most CFD softwares, such as the popular models of Auton or Saffman, overestimate the intensity of the lift force for inertial particles at hig...
Saved in:
Published in: | The journal of computational multiphase flows (Online) 2013-12, Vol.5 (4), p.251-263 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The modeling of the lift force in high shear rate pipe flow is an essential issue for the estimation of the droplet dispersion. The analytical models used in most CFD softwares, such as the popular models of Auton or Saffman, overestimate the intensity of the lift force for inertial particles at high particle Reynolds number. In this paper, after a review of DNS calculations, we present an overall solution for the lift force acting on a droplet in a shear flow, for moderate and high particle Reynolds number in the near-wall zone and for unbounded shear flow. Finally, some numerical results in a cylindrical pipe are presented. |
---|---|
ISSN: | 1757-482X 1757-4838 |
DOI: | 10.1260/1757-482X.5.4.251 |