Loading…
Manual annotation of Drosophila genes: a Genomics Education Partnership protocol [version 1; peer review: 2 approved with reservations]
Annotating the genomes of multiple species allows us to analyze the evolution of their genes. While many eukaryotic genome assemblies already include computational gene predictions, these predictions can benefit from review and refinement through manual gene annotation. The Genomics Education Partne...
Saved in:
Published in: | F1000 research 2022, Vol.11, p.1579 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Annotating the genomes of multiple species allows us to analyze the evolution of their genes. While many eukaryotic genome assemblies already include computational gene predictions, these predictions can benefit from review and refinement through manual gene annotation. The Genomics Education Partnership (GEP;
https://thegep.org/) developed a structural annotation protocol for protein-coding genes that enables undergraduate student and faculty researchers to create high-quality gene annotations that can be utilized in subsequent scientific investigations. For example, this protocol has been utilized by the GEP faculty to engage undergraduate students in the comparative annotation of genes involved in the insulin signaling pathway in 27
Drosophila species, using
D. melanogaster as the reference genome. Students construct gene models using multiple lines of computational and empirical evidence including expression data (e.g., RNA-Seq), sequence similarity (e.g., BLAST and multiple sequence alignment), and computational gene predictions. Quality control measures require each gene be annotated by at least two students working independently, followed by reconciliation of the submitted gene models by a more experienced student. This article provides an overview of the annotation protocol and describes how discrepancies in student submitted gene models are resolved to produce a final, high-quality gene set suitable for subsequent analyses. The protocol can be adapted to other scientific questions (e.g., expansion of the
Drosophila Muller F element) and species (e.g., parasitoid wasps) to provide additional opportunities for undergraduate students to participate in genomics research. These student annotation efforts can substantially improve the quality of gene annotations in publicly available genomic databases. |
---|---|
ISSN: | 2046-1402 2046-1402 |
DOI: | 10.12688/f1000research.126839.1 |