Loading…

Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning

Background: We sought to test the hypothesis that transcriptiome-level genes signatures are differentially expressed between male and female bipolar patients, prior to lithium treatment, in a patient cohort who later were clinically classified as lithium treatment responders. Methods: Gene expressio...

Full description

Saved in:
Bibliographic Details
Published in:F1000 research 2018, Vol.7, p.474
Main Authors: Eugene, Andy R., Masiak, Jolanta, Eugene, Beata
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1651-7ae4a26c8d0356187a525414fc0e061feeb14fe7f5358bc804e27fbbb02363483
container_end_page
container_issue
container_start_page 474
container_title F1000 research
container_volume 7
creator Eugene, Andy R.
Masiak, Jolanta
Eugene, Beata
description Background: We sought to test the hypothesis that transcriptiome-level genes signatures are differentially expressed between male and female bipolar patients, prior to lithium treatment, in a patient cohort who later were clinically classified as lithium treatment responders. Methods: Gene expression study data was obtained from the Lithium Treatment-Moderate dose Use Study data accessed from the National Center for Biotechnology Information’s Gene Expression Omnibus via accession number GSE4548. Differential gene expression analysis was conducted using the Linear Models for Microarray and RNA-Seq (limma) package and the Random Forests machine learning algorithm in R. Results: In pre-treatment lithium responders, the following genes were found having a greater than 0.5 fold-change, and differentially expressed indicating a male bias: RBPMS2, SIDT2, CDH23, LILRA5, and KIR2DS5; while the female-biased genes were: HLA-H, RPS23, FHL3, RPL10A, NBPF14, PSTPIP2, FAM117B, CHST7, and ABRACL. Conclusions: Using machine learning, we developed a pre-treatment gender- and gene-expression-based predictive model selective for lithium responders with an ROC AUC of 0.92 for men and an ROC AUC of 1 for women.
doi_str_mv 10.12688/f1000research.14451.1
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_12688_f1000research_14451_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_12688_f1000research_14451_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1651-7ae4a26c8d0356187a525414fc0e061feeb14fe7f5358bc804e27fbbb02363483</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhC0EElXpKyC_QIrXf0mPqOJPqgQHOEeOs24NiRPZqQQnXh235QCn3dHuNxoNIdfAlsB1Vd04YIxFTGii3S1BSgVLOCMzzqQuQDJ-_me_JIuU3jPAViuheTkj3y8RW28nH7a089PO73s6RTRTj2Gi2XccQkLqA238OHQm0tFMPt8S3acDtMXQYizSiNY7bw8aKX6OGU1-OGBDb-IHxkRNaGlv7M7njy7nDZm_IhfOdAkXv3NO3u7vXtePxeb54Wl9uyksaAVFaVAarm3VMqE0VKVRXEmQzjJkGhxikwWWTglVNbZiEnnpmqZhXGghKzEn-uRr45BSRFeP0edgXzWw-thk_a_J-thkDeIHK29tFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Eugene, Andy R. ; Masiak, Jolanta ; Eugene, Beata</creator><creatorcontrib>Eugene, Andy R. ; Masiak, Jolanta ; Eugene, Beata</creatorcontrib><description>Background: We sought to test the hypothesis that transcriptiome-level genes signatures are differentially expressed between male and female bipolar patients, prior to lithium treatment, in a patient cohort who later were clinically classified as lithium treatment responders. Methods: Gene expression study data was obtained from the Lithium Treatment-Moderate dose Use Study data accessed from the National Center for Biotechnology Information’s Gene Expression Omnibus via accession number GSE4548. Differential gene expression analysis was conducted using the Linear Models for Microarray and RNA-Seq (limma) package and the Random Forests machine learning algorithm in R. Results: In pre-treatment lithium responders, the following genes were found having a greater than 0.5 fold-change, and differentially expressed indicating a male bias: RBPMS2, SIDT2, CDH23, LILRA5, and KIR2DS5; while the female-biased genes were: HLA-H, RPS23, FHL3, RPL10A, NBPF14, PSTPIP2, FAM117B, CHST7, and ABRACL. Conclusions: Using machine learning, we developed a pre-treatment gender- and gene-expression-based predictive model selective for lithium responders with an ROC AUC of 0.92 for men and an ROC AUC of 1 for women.</description><identifier>ISSN: 2046-1402</identifier><identifier>EISSN: 2046-1402</identifier><identifier>DOI: 10.12688/f1000research.14451.1</identifier><language>eng</language><ispartof>F1000 research, 2018, Vol.7, p.474</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1651-7ae4a26c8d0356187a525414fc0e061feeb14fe7f5358bc804e27fbbb02363483</cites><orcidid>0000-0002-2512-5454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Eugene, Andy R.</creatorcontrib><creatorcontrib>Masiak, Jolanta</creatorcontrib><creatorcontrib>Eugene, Beata</creatorcontrib><title>Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning</title><title>F1000 research</title><description>Background: We sought to test the hypothesis that transcriptiome-level genes signatures are differentially expressed between male and female bipolar patients, prior to lithium treatment, in a patient cohort who later were clinically classified as lithium treatment responders. Methods: Gene expression study data was obtained from the Lithium Treatment-Moderate dose Use Study data accessed from the National Center for Biotechnology Information’s Gene Expression Omnibus via accession number GSE4548. Differential gene expression analysis was conducted using the Linear Models for Microarray and RNA-Seq (limma) package and the Random Forests machine learning algorithm in R. Results: In pre-treatment lithium responders, the following genes were found having a greater than 0.5 fold-change, and differentially expressed indicating a male bias: RBPMS2, SIDT2, CDH23, LILRA5, and KIR2DS5; while the female-biased genes were: HLA-H, RPS23, FHL3, RPL10A, NBPF14, PSTPIP2, FAM117B, CHST7, and ABRACL. Conclusions: Using machine learning, we developed a pre-treatment gender- and gene-expression-based predictive model selective for lithium responders with an ROC AUC of 0.92 for men and an ROC AUC of 1 for women.</description><issn>2046-1402</issn><issn>2046-1402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkM1OwzAQhC0EElXpKyC_QIrXf0mPqOJPqgQHOEeOs24NiRPZqQQnXh235QCn3dHuNxoNIdfAlsB1Vd04YIxFTGii3S1BSgVLOCMzzqQuQDJ-_me_JIuU3jPAViuheTkj3y8RW28nH7a089PO73s6RTRTj2Gi2XccQkLqA238OHQm0tFMPt8S3acDtMXQYizSiNY7bw8aKX6OGU1-OGBDb-IHxkRNaGlv7M7njy7nDZm_IhfOdAkXv3NO3u7vXtePxeb54Wl9uyksaAVFaVAarm3VMqE0VKVRXEmQzjJkGhxikwWWTglVNbZiEnnpmqZhXGghKzEn-uRr45BSRFeP0edgXzWw-thk_a_J-thkDeIHK29tFA</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Eugene, Andy R.</creator><creator>Masiak, Jolanta</creator><creator>Eugene, Beata</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2512-5454</orcidid></search><sort><creationdate>2018</creationdate><title>Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning</title><author>Eugene, Andy R. ; Masiak, Jolanta ; Eugene, Beata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1651-7ae4a26c8d0356187a525414fc0e061feeb14fe7f5358bc804e27fbbb02363483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eugene, Andy R.</creatorcontrib><creatorcontrib>Masiak, Jolanta</creatorcontrib><creatorcontrib>Eugene, Beata</creatorcontrib><collection>CrossRef</collection><jtitle>F1000 research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eugene, Andy R.</au><au>Masiak, Jolanta</au><au>Eugene, Beata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning</atitle><jtitle>F1000 research</jtitle><date>2018</date><risdate>2018</risdate><volume>7</volume><spage>474</spage><pages>474-</pages><issn>2046-1402</issn><eissn>2046-1402</eissn><abstract>Background: We sought to test the hypothesis that transcriptiome-level genes signatures are differentially expressed between male and female bipolar patients, prior to lithium treatment, in a patient cohort who later were clinically classified as lithium treatment responders. Methods: Gene expression study data was obtained from the Lithium Treatment-Moderate dose Use Study data accessed from the National Center for Biotechnology Information’s Gene Expression Omnibus via accession number GSE4548. Differential gene expression analysis was conducted using the Linear Models for Microarray and RNA-Seq (limma) package and the Random Forests machine learning algorithm in R. Results: In pre-treatment lithium responders, the following genes were found having a greater than 0.5 fold-change, and differentially expressed indicating a male bias: RBPMS2, SIDT2, CDH23, LILRA5, and KIR2DS5; while the female-biased genes were: HLA-H, RPS23, FHL3, RPL10A, NBPF14, PSTPIP2, FAM117B, CHST7, and ABRACL. Conclusions: Using machine learning, we developed a pre-treatment gender- and gene-expression-based predictive model selective for lithium responders with an ROC AUC of 0.92 for men and an ROC AUC of 1 for women.</abstract><doi>10.12688/f1000research.14451.1</doi><orcidid>https://orcid.org/0000-0002-2512-5454</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-1402
ispartof F1000 research, 2018, Vol.7, p.474
issn 2046-1402
2046-1402
language eng
recordid cdi_crossref_primary_10_12688_f1000research_14451_1
source PubMed (Medline); Publicly Available Content Database
title Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20lithium%20treatment%20response%20in%20bipolar%20patients%20using%20gender-specific%20gene%20expression%20biomarkers%20and%20machine%20learning&rft.jtitle=F1000%20research&rft.au=Eugene,%20Andy%20R.&rft.date=2018&rft.volume=7&rft.spage=474&rft.pages=474-&rft.issn=2046-1402&rft.eissn=2046-1402&rft_id=info:doi/10.12688/f1000research.14451.1&rft_dat=%3Ccrossref%3E10_12688_f1000research_14451_1%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1651-7ae4a26c8d0356187a525414fc0e061feeb14fe7f5358bc804e27fbbb02363483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true