Loading…
Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning
Background: We sought to test the hypothesis that transcriptiome-level genes signatures are differentially expressed between male and female bipolar patients, prior to lithium treatment, in a patient cohort who later were clinically classified as lithium treatment responders. Methods: Gene expressio...
Saved in:
Published in: | F1000 research 2018, Vol.7, p.474 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1651-7ae4a26c8d0356187a525414fc0e061feeb14fe7f5358bc804e27fbbb02363483 |
container_end_page | |
container_issue | |
container_start_page | 474 |
container_title | F1000 research |
container_volume | 7 |
creator | Eugene, Andy R. Masiak, Jolanta Eugene, Beata |
description | Background:
We sought to test the hypothesis that transcriptiome-level genes signatures are differentially expressed between male and female bipolar patients, prior to lithium treatment, in a patient cohort who later were clinically classified as lithium treatment responders.
Methods:
Gene expression study data was obtained from the Lithium Treatment-Moderate dose Use Study data accessed from the National Center for Biotechnology Information’s Gene Expression Omnibus via accession number GSE4548. Differential gene expression analysis was conducted using the Linear Models for Microarray and RNA-Seq (limma) package and the Random Forests machine learning algorithm in R.
Results:
In pre-treatment lithium responders, the following genes were found having a greater than 0.5 fold-change, and differentially expressed indicating a male bias: RBPMS2, SIDT2, CDH23, LILRA5, and KIR2DS5; while the female-biased genes were: HLA-H, RPS23, FHL3, RPL10A, NBPF14, PSTPIP2, FAM117B, CHST7, and ABRACL.
Conclusions:
Using machine learning, we developed a pre-treatment gender- and gene-expression-based predictive model selective for lithium responders with an ROC AUC of 0.92 for men and an ROC AUC of 1 for women. |
doi_str_mv | 10.12688/f1000research.14451.1 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_12688_f1000research_14451_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_12688_f1000research_14451_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1651-7ae4a26c8d0356187a525414fc0e061feeb14fe7f5358bc804e27fbbb02363483</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhC0EElXpKyC_QIrXf0mPqOJPqgQHOEeOs24NiRPZqQQnXh235QCn3dHuNxoNIdfAlsB1Vd04YIxFTGii3S1BSgVLOCMzzqQuQDJ-_me_JIuU3jPAViuheTkj3y8RW28nH7a089PO73s6RTRTj2Gi2XccQkLqA238OHQm0tFMPt8S3acDtMXQYizSiNY7bw8aKX6OGU1-OGBDb-IHxkRNaGlv7M7njy7nDZm_IhfOdAkXv3NO3u7vXtePxeb54Wl9uyksaAVFaVAarm3VMqE0VKVRXEmQzjJkGhxikwWWTglVNbZiEnnpmqZhXGghKzEn-uRr45BSRFeP0edgXzWw-thk_a_J-thkDeIHK29tFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Eugene, Andy R. ; Masiak, Jolanta ; Eugene, Beata</creator><creatorcontrib>Eugene, Andy R. ; Masiak, Jolanta ; Eugene, Beata</creatorcontrib><description>Background:
We sought to test the hypothesis that transcriptiome-level genes signatures are differentially expressed between male and female bipolar patients, prior to lithium treatment, in a patient cohort who later were clinically classified as lithium treatment responders.
Methods:
Gene expression study data was obtained from the Lithium Treatment-Moderate dose Use Study data accessed from the National Center for Biotechnology Information’s Gene Expression Omnibus via accession number GSE4548. Differential gene expression analysis was conducted using the Linear Models for Microarray and RNA-Seq (limma) package and the Random Forests machine learning algorithm in R.
Results:
In pre-treatment lithium responders, the following genes were found having a greater than 0.5 fold-change, and differentially expressed indicating a male bias: RBPMS2, SIDT2, CDH23, LILRA5, and KIR2DS5; while the female-biased genes were: HLA-H, RPS23, FHL3, RPL10A, NBPF14, PSTPIP2, FAM117B, CHST7, and ABRACL.
Conclusions:
Using machine learning, we developed a pre-treatment gender- and gene-expression-based predictive model selective for lithium responders with an ROC AUC of 0.92 for men and an ROC AUC of 1 for women.</description><identifier>ISSN: 2046-1402</identifier><identifier>EISSN: 2046-1402</identifier><identifier>DOI: 10.12688/f1000research.14451.1</identifier><language>eng</language><ispartof>F1000 research, 2018, Vol.7, p.474</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1651-7ae4a26c8d0356187a525414fc0e061feeb14fe7f5358bc804e27fbbb02363483</cites><orcidid>0000-0002-2512-5454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Eugene, Andy R.</creatorcontrib><creatorcontrib>Masiak, Jolanta</creatorcontrib><creatorcontrib>Eugene, Beata</creatorcontrib><title>Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning</title><title>F1000 research</title><description>Background:
We sought to test the hypothesis that transcriptiome-level genes signatures are differentially expressed between male and female bipolar patients, prior to lithium treatment, in a patient cohort who later were clinically classified as lithium treatment responders.
Methods:
Gene expression study data was obtained from the Lithium Treatment-Moderate dose Use Study data accessed from the National Center for Biotechnology Information’s Gene Expression Omnibus via accession number GSE4548. Differential gene expression analysis was conducted using the Linear Models for Microarray and RNA-Seq (limma) package and the Random Forests machine learning algorithm in R.
Results:
In pre-treatment lithium responders, the following genes were found having a greater than 0.5 fold-change, and differentially expressed indicating a male bias: RBPMS2, SIDT2, CDH23, LILRA5, and KIR2DS5; while the female-biased genes were: HLA-H, RPS23, FHL3, RPL10A, NBPF14, PSTPIP2, FAM117B, CHST7, and ABRACL.
Conclusions:
Using machine learning, we developed a pre-treatment gender- and gene-expression-based predictive model selective for lithium responders with an ROC AUC of 0.92 for men and an ROC AUC of 1 for women.</description><issn>2046-1402</issn><issn>2046-1402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkM1OwzAQhC0EElXpKyC_QIrXf0mPqOJPqgQHOEeOs24NiRPZqQQnXh235QCn3dHuNxoNIdfAlsB1Vd04YIxFTGii3S1BSgVLOCMzzqQuQDJ-_me_JIuU3jPAViuheTkj3y8RW28nH7a089PO73s6RTRTj2Gi2XccQkLqA238OHQm0tFMPt8S3acDtMXQYizSiNY7bw8aKX6OGU1-OGBDb-IHxkRNaGlv7M7njy7nDZm_IhfOdAkXv3NO3u7vXtePxeb54Wl9uyksaAVFaVAarm3VMqE0VKVRXEmQzjJkGhxikwWWTglVNbZiEnnpmqZhXGghKzEn-uRr45BSRFeP0edgXzWw-thk_a_J-thkDeIHK29tFA</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Eugene, Andy R.</creator><creator>Masiak, Jolanta</creator><creator>Eugene, Beata</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2512-5454</orcidid></search><sort><creationdate>2018</creationdate><title>Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning</title><author>Eugene, Andy R. ; Masiak, Jolanta ; Eugene, Beata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1651-7ae4a26c8d0356187a525414fc0e061feeb14fe7f5358bc804e27fbbb02363483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eugene, Andy R.</creatorcontrib><creatorcontrib>Masiak, Jolanta</creatorcontrib><creatorcontrib>Eugene, Beata</creatorcontrib><collection>CrossRef</collection><jtitle>F1000 research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eugene, Andy R.</au><au>Masiak, Jolanta</au><au>Eugene, Beata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning</atitle><jtitle>F1000 research</jtitle><date>2018</date><risdate>2018</risdate><volume>7</volume><spage>474</spage><pages>474-</pages><issn>2046-1402</issn><eissn>2046-1402</eissn><abstract>Background:
We sought to test the hypothesis that transcriptiome-level genes signatures are differentially expressed between male and female bipolar patients, prior to lithium treatment, in a patient cohort who later were clinically classified as lithium treatment responders.
Methods:
Gene expression study data was obtained from the Lithium Treatment-Moderate dose Use Study data accessed from the National Center for Biotechnology Information’s Gene Expression Omnibus via accession number GSE4548. Differential gene expression analysis was conducted using the Linear Models for Microarray and RNA-Seq (limma) package and the Random Forests machine learning algorithm in R.
Results:
In pre-treatment lithium responders, the following genes were found having a greater than 0.5 fold-change, and differentially expressed indicating a male bias: RBPMS2, SIDT2, CDH23, LILRA5, and KIR2DS5; while the female-biased genes were: HLA-H, RPS23, FHL3, RPL10A, NBPF14, PSTPIP2, FAM117B, CHST7, and ABRACL.
Conclusions:
Using machine learning, we developed a pre-treatment gender- and gene-expression-based predictive model selective for lithium responders with an ROC AUC of 0.92 for men and an ROC AUC of 1 for women.</abstract><doi>10.12688/f1000research.14451.1</doi><orcidid>https://orcid.org/0000-0002-2512-5454</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-1402 |
ispartof | F1000 research, 2018, Vol.7, p.474 |
issn | 2046-1402 2046-1402 |
language | eng |
recordid | cdi_crossref_primary_10_12688_f1000research_14451_1 |
source | PubMed (Medline); Publicly Available Content Database |
title | Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20lithium%20treatment%20response%20in%20bipolar%20patients%20using%20gender-specific%20gene%20expression%20biomarkers%20and%20machine%20learning&rft.jtitle=F1000%20research&rft.au=Eugene,%20Andy%20R.&rft.date=2018&rft.volume=7&rft.spage=474&rft.pages=474-&rft.issn=2046-1402&rft.eissn=2046-1402&rft_id=info:doi/10.12688/f1000research.14451.1&rft_dat=%3Ccrossref%3E10_12688_f1000research_14451_1%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1651-7ae4a26c8d0356187a525414fc0e061feeb14fe7f5358bc804e27fbbb02363483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |