Loading…

A Cross-Cohort Changepoint Model for Customer-Base Analysis

We introduce a new methodology that can capture and explain differences across a series of cohorts of new customers in a repeat-transaction setting. More specifically, this new framework, which we call a vector changepoint model , exploits the underlying regime structure in a sequence of acquired cu...

Full description

Saved in:
Bibliographic Details
Published in:Marketing science (Providence, R.I.) R.I.), 2017-03, Vol.36 (2), p.195-213
Main Authors: Gopalakrishnan, Arun, Bradlow, Eric T., Fader, Peter S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c604t-595121225f497a074be62385e4ae0f9de339ce61ec50748b03397e4e82a59a4e3
cites cdi_FETCH-LOGICAL-c604t-595121225f497a074be62385e4ae0f9de339ce61ec50748b03397e4e82a59a4e3
container_end_page 213
container_issue 2
container_start_page 195
container_title Marketing science (Providence, R.I.)
container_volume 36
creator Gopalakrishnan, Arun
Bradlow, Eric T.
Fader, Peter S.
description We introduce a new methodology that can capture and explain differences across a series of cohorts of new customers in a repeat-transaction setting. More specifically, this new framework, which we call a vector changepoint model , exploits the underlying regime structure in a sequence of acquired customer cohorts to make predictive statements about new cohorts for which the firm has little or no longitudinal transaction data. To accomplish this, we develop our model within a hierarchical Bayesian framework to uncover evidence of (latent) regime changes for each cohort-level parameter separately, while disentangling cross-cohort changes from calendar-time changes. Calibrating the model using multicohort donation data from a nonprofit organization, we find that holdout predictions for new cohorts using this model have greater accuracy—and greater diagnostic value—compared to a variety of strong benchmarks. Our modeling approach also highlights the perils of pooling data across cohorts without accounting for cross-cohort shifts, thus enabling managers to quantify their uncertainty about potential regime changes and avoid “old data” aggregation bias.
doi_str_mv 10.1287/mksc.2016.1007
format article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1287_mksc_2016_1007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A491256274</galeid><jstor_id>45158483</jstor_id><sourcerecordid>A491256274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-595121225f497a074be62385e4ae0f9de339ce61ec50748b03397e4e82a59a4e3</originalsourceid><addsrcrecordid>eNqFkcFr2zAUh8XYoFm3a28DQ2GnOpNkyZboKTVrN-jYZYPehOI8O8psK9OTof3vJ5OyLhAYAglJ3-_xpI-QC0aXjKvq0_ALmyWnrFwySqtXZMEkL3Mp1MNrsqBVwXNeaH1G3iLuaCI4VQtyvcrq4BHz2m99iFm9tWMHe-_GmH3zG-iz1oesnjD6AUJ-YxGy1Wj7J3T4jrxpbY_w_nk9Jz9vP_-ov-T33---1qv7vCmpiLnUknHGuWyFriytxBpKXigJwgJt9QaKQjdQMmhkulRrmvYVCFDcSm0FFOfk8lB3H_zvCTCanZ9CagIN06UStKyUfKE624NxY-tjsM3gsDEroRmXJa9EovITVAcjBNv7EVqXjo_45Qk-jQ0MrjkZ-HgUSEyEx9jZCdEcg1f_gOsJ3QiYJnTdNuKBP9VIM-sK0Jp9cIMNT4ZRM_s3s38z-zez_xT4cAjskrvwlxaSSSVU8fIT86PCgP-r9wcSgra3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968406785</pqid></control><display><type>article</type><title>A Cross-Cohort Changepoint Model for Customer-Base Analysis</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate</source><source>Informs</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Gopalakrishnan, Arun ; Bradlow, Eric T. ; Fader, Peter S.</creator><creatorcontrib>Gopalakrishnan, Arun ; Bradlow, Eric T. ; Fader, Peter S.</creatorcontrib><description>We introduce a new methodology that can capture and explain differences across a series of cohorts of new customers in a repeat-transaction setting. More specifically, this new framework, which we call a vector changepoint model , exploits the underlying regime structure in a sequence of acquired customer cohorts to make predictive statements about new cohorts for which the firm has little or no longitudinal transaction data. To accomplish this, we develop our model within a hierarchical Bayesian framework to uncover evidence of (latent) regime changes for each cohort-level parameter separately, while disentangling cross-cohort changes from calendar-time changes. Calibrating the model using multicohort donation data from a nonprofit organization, we find that holdout predictions for new cohorts using this model have greater accuracy—and greater diagnostic value—compared to a variety of strong benchmarks. Our modeling approach also highlights the perils of pooling data across cohorts without accounting for cross-cohort shifts, thus enabling managers to quantify their uncertainty about potential regime changes and avoid “old data” aggregation bias.</description><identifier>ISSN: 0732-2399</identifier><identifier>EISSN: 1526-548X</identifier><identifier>DOI: 10.1287/mksc.2016.1007</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Bayesian analysis ; Bias ; changepoint ; Cohort analysis ; cross-cohort ; customer lifetime value ; customer-base analysis ; Customers ; Donations ; forecasting ; hierarchical Bayesian ; Marketing ; Nonprofit organizations ; reversible-jump MCMC ; Studies ; Uncertainty</subject><ispartof>Marketing science (Providence, R.I.), 2017-03, Vol.36 (2), p.195-213</ispartof><rights>2017 INFORMS</rights><rights>COPYRIGHT 2017 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Mar/Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-595121225f497a074be62385e4ae0f9de339ce61ec50748b03397e4e82a59a4e3</citedby><cites>FETCH-LOGICAL-c604t-595121225f497a074be62385e4ae0f9de339ce61ec50748b03397e4e82a59a4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45158483$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mksc.2016.1007$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,33223,58238,58471,62616</link.rule.ids></links><search><creatorcontrib>Gopalakrishnan, Arun</creatorcontrib><creatorcontrib>Bradlow, Eric T.</creatorcontrib><creatorcontrib>Fader, Peter S.</creatorcontrib><title>A Cross-Cohort Changepoint Model for Customer-Base Analysis</title><title>Marketing science (Providence, R.I.)</title><description>We introduce a new methodology that can capture and explain differences across a series of cohorts of new customers in a repeat-transaction setting. More specifically, this new framework, which we call a vector changepoint model , exploits the underlying regime structure in a sequence of acquired customer cohorts to make predictive statements about new cohorts for which the firm has little or no longitudinal transaction data. To accomplish this, we develop our model within a hierarchical Bayesian framework to uncover evidence of (latent) regime changes for each cohort-level parameter separately, while disentangling cross-cohort changes from calendar-time changes. Calibrating the model using multicohort donation data from a nonprofit organization, we find that holdout predictions for new cohorts using this model have greater accuracy—and greater diagnostic value—compared to a variety of strong benchmarks. Our modeling approach also highlights the perils of pooling data across cohorts without accounting for cross-cohort shifts, thus enabling managers to quantify their uncertainty about potential regime changes and avoid “old data” aggregation bias.</description><subject>Bayesian analysis</subject><subject>Bias</subject><subject>changepoint</subject><subject>Cohort analysis</subject><subject>cross-cohort</subject><subject>customer lifetime value</subject><subject>customer-base analysis</subject><subject>Customers</subject><subject>Donations</subject><subject>forecasting</subject><subject>hierarchical Bayesian</subject><subject>Marketing</subject><subject>Nonprofit organizations</subject><subject>reversible-jump MCMC</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>0732-2399</issn><issn>1526-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkcFr2zAUh8XYoFm3a28DQ2GnOpNkyZboKTVrN-jYZYPehOI8O8psK9OTof3vJ5OyLhAYAglJ3-_xpI-QC0aXjKvq0_ALmyWnrFwySqtXZMEkL3Mp1MNrsqBVwXNeaH1G3iLuaCI4VQtyvcrq4BHz2m99iFm9tWMHe-_GmH3zG-iz1oesnjD6AUJ-YxGy1Wj7J3T4jrxpbY_w_nk9Jz9vP_-ov-T33---1qv7vCmpiLnUknHGuWyFriytxBpKXigJwgJt9QaKQjdQMmhkulRrmvYVCFDcSm0FFOfk8lB3H_zvCTCanZ9CagIN06UStKyUfKE624NxY-tjsM3gsDEroRmXJa9EovITVAcjBNv7EVqXjo_45Qk-jQ0MrjkZ-HgUSEyEx9jZCdEcg1f_gOsJ3QiYJnTdNuKBP9VIM-sK0Jp9cIMNT4ZRM_s3s38z-zez_xT4cAjskrvwlxaSSSVU8fIT86PCgP-r9wcSgra3</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Gopalakrishnan, Arun</creator><creator>Bradlow, Eric T.</creator><creator>Fader, Peter S.</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20170301</creationdate><title>A Cross-Cohort Changepoint Model for Customer-Base Analysis</title><author>Gopalakrishnan, Arun ; Bradlow, Eric T. ; Fader, Peter S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-595121225f497a074be62385e4ae0f9de339ce61ec50748b03397e4e82a59a4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayesian analysis</topic><topic>Bias</topic><topic>changepoint</topic><topic>Cohort analysis</topic><topic>cross-cohort</topic><topic>customer lifetime value</topic><topic>customer-base analysis</topic><topic>Customers</topic><topic>Donations</topic><topic>forecasting</topic><topic>hierarchical Bayesian</topic><topic>Marketing</topic><topic>Nonprofit organizations</topic><topic>reversible-jump MCMC</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gopalakrishnan, Arun</creatorcontrib><creatorcontrib>Bradlow, Eric T.</creatorcontrib><creatorcontrib>Fader, Peter S.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Marketing science (Providence, R.I.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopalakrishnan, Arun</au><au>Bradlow, Eric T.</au><au>Fader, Peter S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cross-Cohort Changepoint Model for Customer-Base Analysis</atitle><jtitle>Marketing science (Providence, R.I.)</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>36</volume><issue>2</issue><spage>195</spage><epage>213</epage><pages>195-213</pages><issn>0732-2399</issn><eissn>1526-548X</eissn><abstract>We introduce a new methodology that can capture and explain differences across a series of cohorts of new customers in a repeat-transaction setting. More specifically, this new framework, which we call a vector changepoint model , exploits the underlying regime structure in a sequence of acquired customer cohorts to make predictive statements about new cohorts for which the firm has little or no longitudinal transaction data. To accomplish this, we develop our model within a hierarchical Bayesian framework to uncover evidence of (latent) regime changes for each cohort-level parameter separately, while disentangling cross-cohort changes from calendar-time changes. Calibrating the model using multicohort donation data from a nonprofit organization, we find that holdout predictions for new cohorts using this model have greater accuracy—and greater diagnostic value—compared to a variety of strong benchmarks. Our modeling approach also highlights the perils of pooling data across cohorts without accounting for cross-cohort shifts, thus enabling managers to quantify their uncertainty about potential regime changes and avoid “old data” aggregation bias.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/mksc.2016.1007</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0732-2399
ispartof Marketing science (Providence, R.I.), 2017-03, Vol.36 (2), p.195-213
issn 0732-2399
1526-548X
language eng
recordid cdi_crossref_primary_10_1287_mksc_2016_1007
source International Bibliography of the Social Sciences (IBSS); Business Source Ultimate; Informs; JSTOR Archival Journals and Primary Sources Collection
subjects Bayesian analysis
Bias
changepoint
Cohort analysis
cross-cohort
customer lifetime value
customer-base analysis
Customers
Donations
forecasting
hierarchical Bayesian
Marketing
Nonprofit organizations
reversible-jump MCMC
Studies
Uncertainty
title A Cross-Cohort Changepoint Model for Customer-Base Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cross-Cohort%20Changepoint%20Model%20for%20Customer-Base%20Analysis&rft.jtitle=Marketing%20science%20(Providence,%20R.I.)&rft.au=Gopalakrishnan,%20Arun&rft.date=2017-03-01&rft.volume=36&rft.issue=2&rft.spage=195&rft.epage=213&rft.pages=195-213&rft.issn=0732-2399&rft.eissn=1526-548X&rft_id=info:doi/10.1287/mksc.2016.1007&rft_dat=%3Cgale_cross%3EA491256274%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c604t-595121225f497a074be62385e4ae0f9de339ce61ec50748b03397e4e82a59a4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1968406785&rft_id=info:pmid/&rft_galeid=A491256274&rft_jstor_id=45158483&rfr_iscdi=true