Loading…
A Cross-Cohort Changepoint Model for Customer-Base Analysis
We introduce a new methodology that can capture and explain differences across a series of cohorts of new customers in a repeat-transaction setting. More specifically, this new framework, which we call a vector changepoint model , exploits the underlying regime structure in a sequence of acquired cu...
Saved in:
Published in: | Marketing science (Providence, R.I.) R.I.), 2017-03, Vol.36 (2), p.195-213 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c604t-595121225f497a074be62385e4ae0f9de339ce61ec50748b03397e4e82a59a4e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c604t-595121225f497a074be62385e4ae0f9de339ce61ec50748b03397e4e82a59a4e3 |
container_end_page | 213 |
container_issue | 2 |
container_start_page | 195 |
container_title | Marketing science (Providence, R.I.) |
container_volume | 36 |
creator | Gopalakrishnan, Arun Bradlow, Eric T. Fader, Peter S. |
description | We introduce a new methodology that can capture and explain differences across a series of cohorts of new customers in a repeat-transaction setting. More specifically, this new framework, which we call a
vector changepoint model
, exploits the underlying regime structure in a sequence of acquired customer cohorts to make predictive statements about new cohorts for which the firm has little or no longitudinal transaction data. To accomplish this, we develop our model within a hierarchical Bayesian framework to uncover evidence of (latent) regime changes for each cohort-level parameter separately, while disentangling cross-cohort changes from calendar-time changes. Calibrating the model using multicohort donation data from a nonprofit organization, we find that holdout predictions for new cohorts using this model have greater accuracy—and greater diagnostic value—compared to a variety of strong benchmarks. Our modeling approach also highlights the perils of pooling data across cohorts without accounting for cross-cohort shifts, thus enabling managers to quantify their uncertainty about potential regime changes and avoid “old data” aggregation bias. |
doi_str_mv | 10.1287/mksc.2016.1007 |
format | article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1287_mksc_2016_1007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A491256274</galeid><jstor_id>45158483</jstor_id><sourcerecordid>A491256274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-595121225f497a074be62385e4ae0f9de339ce61ec50748b03397e4e82a59a4e3</originalsourceid><addsrcrecordid>eNqFkcFr2zAUh8XYoFm3a28DQ2GnOpNkyZboKTVrN-jYZYPehOI8O8psK9OTof3vJ5OyLhAYAglJ3-_xpI-QC0aXjKvq0_ALmyWnrFwySqtXZMEkL3Mp1MNrsqBVwXNeaH1G3iLuaCI4VQtyvcrq4BHz2m99iFm9tWMHe-_GmH3zG-iz1oesnjD6AUJ-YxGy1Wj7J3T4jrxpbY_w_nk9Jz9vP_-ov-T33---1qv7vCmpiLnUknHGuWyFriytxBpKXigJwgJt9QaKQjdQMmhkulRrmvYVCFDcSm0FFOfk8lB3H_zvCTCanZ9CagIN06UStKyUfKE624NxY-tjsM3gsDEroRmXJa9EovITVAcjBNv7EVqXjo_45Qk-jQ0MrjkZ-HgUSEyEx9jZCdEcg1f_gOsJ3QiYJnTdNuKBP9VIM-sK0Jp9cIMNT4ZRM_s3s38z-zez_xT4cAjskrvwlxaSSSVU8fIT86PCgP-r9wcSgra3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968406785</pqid></control><display><type>article</type><title>A Cross-Cohort Changepoint Model for Customer-Base Analysis</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate</source><source>Informs</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Gopalakrishnan, Arun ; Bradlow, Eric T. ; Fader, Peter S.</creator><creatorcontrib>Gopalakrishnan, Arun ; Bradlow, Eric T. ; Fader, Peter S.</creatorcontrib><description>We introduce a new methodology that can capture and explain differences across a series of cohorts of new customers in a repeat-transaction setting. More specifically, this new framework, which we call a
vector changepoint model
, exploits the underlying regime structure in a sequence of acquired customer cohorts to make predictive statements about new cohorts for which the firm has little or no longitudinal transaction data. To accomplish this, we develop our model within a hierarchical Bayesian framework to uncover evidence of (latent) regime changes for each cohort-level parameter separately, while disentangling cross-cohort changes from calendar-time changes. Calibrating the model using multicohort donation data from a nonprofit organization, we find that holdout predictions for new cohorts using this model have greater accuracy—and greater diagnostic value—compared to a variety of strong benchmarks. Our modeling approach also highlights the perils of pooling data across cohorts without accounting for cross-cohort shifts, thus enabling managers to quantify their uncertainty about potential regime changes and avoid “old data” aggregation bias.</description><identifier>ISSN: 0732-2399</identifier><identifier>EISSN: 1526-548X</identifier><identifier>DOI: 10.1287/mksc.2016.1007</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Bayesian analysis ; Bias ; changepoint ; Cohort analysis ; cross-cohort ; customer lifetime value ; customer-base analysis ; Customers ; Donations ; forecasting ; hierarchical Bayesian ; Marketing ; Nonprofit organizations ; reversible-jump MCMC ; Studies ; Uncertainty</subject><ispartof>Marketing science (Providence, R.I.), 2017-03, Vol.36 (2), p.195-213</ispartof><rights>2017 INFORMS</rights><rights>COPYRIGHT 2017 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Mar/Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-595121225f497a074be62385e4ae0f9de339ce61ec50748b03397e4e82a59a4e3</citedby><cites>FETCH-LOGICAL-c604t-595121225f497a074be62385e4ae0f9de339ce61ec50748b03397e4e82a59a4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45158483$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mksc.2016.1007$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,33223,58238,58471,62616</link.rule.ids></links><search><creatorcontrib>Gopalakrishnan, Arun</creatorcontrib><creatorcontrib>Bradlow, Eric T.</creatorcontrib><creatorcontrib>Fader, Peter S.</creatorcontrib><title>A Cross-Cohort Changepoint Model for Customer-Base Analysis</title><title>Marketing science (Providence, R.I.)</title><description>We introduce a new methodology that can capture and explain differences across a series of cohorts of new customers in a repeat-transaction setting. More specifically, this new framework, which we call a
vector changepoint model
, exploits the underlying regime structure in a sequence of acquired customer cohorts to make predictive statements about new cohorts for which the firm has little or no longitudinal transaction data. To accomplish this, we develop our model within a hierarchical Bayesian framework to uncover evidence of (latent) regime changes for each cohort-level parameter separately, while disentangling cross-cohort changes from calendar-time changes. Calibrating the model using multicohort donation data from a nonprofit organization, we find that holdout predictions for new cohorts using this model have greater accuracy—and greater diagnostic value—compared to a variety of strong benchmarks. Our modeling approach also highlights the perils of pooling data across cohorts without accounting for cross-cohort shifts, thus enabling managers to quantify their uncertainty about potential regime changes and avoid “old data” aggregation bias.</description><subject>Bayesian analysis</subject><subject>Bias</subject><subject>changepoint</subject><subject>Cohort analysis</subject><subject>cross-cohort</subject><subject>customer lifetime value</subject><subject>customer-base analysis</subject><subject>Customers</subject><subject>Donations</subject><subject>forecasting</subject><subject>hierarchical Bayesian</subject><subject>Marketing</subject><subject>Nonprofit organizations</subject><subject>reversible-jump MCMC</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>0732-2399</issn><issn>1526-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkcFr2zAUh8XYoFm3a28DQ2GnOpNkyZboKTVrN-jYZYPehOI8O8psK9OTof3vJ5OyLhAYAglJ3-_xpI-QC0aXjKvq0_ALmyWnrFwySqtXZMEkL3Mp1MNrsqBVwXNeaH1G3iLuaCI4VQtyvcrq4BHz2m99iFm9tWMHe-_GmH3zG-iz1oesnjD6AUJ-YxGy1Wj7J3T4jrxpbY_w_nk9Jz9vP_-ov-T33---1qv7vCmpiLnUknHGuWyFriytxBpKXigJwgJt9QaKQjdQMmhkulRrmvYVCFDcSm0FFOfk8lB3H_zvCTCanZ9CagIN06UStKyUfKE624NxY-tjsM3gsDEroRmXJa9EovITVAcjBNv7EVqXjo_45Qk-jQ0MrjkZ-HgUSEyEx9jZCdEcg1f_gOsJ3QiYJnTdNuKBP9VIM-sK0Jp9cIMNT4ZRM_s3s38z-zez_xT4cAjskrvwlxaSSSVU8fIT86PCgP-r9wcSgra3</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Gopalakrishnan, Arun</creator><creator>Bradlow, Eric T.</creator><creator>Fader, Peter S.</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20170301</creationdate><title>A Cross-Cohort Changepoint Model for Customer-Base Analysis</title><author>Gopalakrishnan, Arun ; Bradlow, Eric T. ; Fader, Peter S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-595121225f497a074be62385e4ae0f9de339ce61ec50748b03397e4e82a59a4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayesian analysis</topic><topic>Bias</topic><topic>changepoint</topic><topic>Cohort analysis</topic><topic>cross-cohort</topic><topic>customer lifetime value</topic><topic>customer-base analysis</topic><topic>Customers</topic><topic>Donations</topic><topic>forecasting</topic><topic>hierarchical Bayesian</topic><topic>Marketing</topic><topic>Nonprofit organizations</topic><topic>reversible-jump MCMC</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gopalakrishnan, Arun</creatorcontrib><creatorcontrib>Bradlow, Eric T.</creatorcontrib><creatorcontrib>Fader, Peter S.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Marketing science (Providence, R.I.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopalakrishnan, Arun</au><au>Bradlow, Eric T.</au><au>Fader, Peter S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cross-Cohort Changepoint Model for Customer-Base Analysis</atitle><jtitle>Marketing science (Providence, R.I.)</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>36</volume><issue>2</issue><spage>195</spage><epage>213</epage><pages>195-213</pages><issn>0732-2399</issn><eissn>1526-548X</eissn><abstract>We introduce a new methodology that can capture and explain differences across a series of cohorts of new customers in a repeat-transaction setting. More specifically, this new framework, which we call a
vector changepoint model
, exploits the underlying regime structure in a sequence of acquired customer cohorts to make predictive statements about new cohorts for which the firm has little or no longitudinal transaction data. To accomplish this, we develop our model within a hierarchical Bayesian framework to uncover evidence of (latent) regime changes for each cohort-level parameter separately, while disentangling cross-cohort changes from calendar-time changes. Calibrating the model using multicohort donation data from a nonprofit organization, we find that holdout predictions for new cohorts using this model have greater accuracy—and greater diagnostic value—compared to a variety of strong benchmarks. Our modeling approach also highlights the perils of pooling data across cohorts without accounting for cross-cohort shifts, thus enabling managers to quantify their uncertainty about potential regime changes and avoid “old data” aggregation bias.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/mksc.2016.1007</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0732-2399 |
ispartof | Marketing science (Providence, R.I.), 2017-03, Vol.36 (2), p.195-213 |
issn | 0732-2399 1526-548X |
language | eng |
recordid | cdi_crossref_primary_10_1287_mksc_2016_1007 |
source | International Bibliography of the Social Sciences (IBSS); Business Source Ultimate; Informs; JSTOR Archival Journals and Primary Sources Collection |
subjects | Bayesian analysis Bias changepoint Cohort analysis cross-cohort customer lifetime value customer-base analysis Customers Donations forecasting hierarchical Bayesian Marketing Nonprofit organizations reversible-jump MCMC Studies Uncertainty |
title | A Cross-Cohort Changepoint Model for Customer-Base Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cross-Cohort%20Changepoint%20Model%20for%20Customer-Base%20Analysis&rft.jtitle=Marketing%20science%20(Providence,%20R.I.)&rft.au=Gopalakrishnan,%20Arun&rft.date=2017-03-01&rft.volume=36&rft.issue=2&rft.spage=195&rft.epage=213&rft.pages=195-213&rft.issn=0732-2399&rft.eissn=1526-548X&rft_id=info:doi/10.1287/mksc.2016.1007&rft_dat=%3Cgale_cross%3EA491256274%3C/gale_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c604t-595121225f497a074be62385e4ae0f9de339ce61ec50748b03397e4e82a59a4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1968406785&rft_id=info:pmid/&rft_galeid=A491256274&rft_jstor_id=45158483&rfr_iscdi=true |