Loading…

Note--On the Merits of an "Approximation" to the Busy Period of the GI/G/1 Queue

An approximation suggested by D. Gross and C. M. Harris in their book Fundamentals of Queueing Theory for computing the busy period characteristics in the single server queue with renewal input and general i.i.d. service times commonly denoted by GI / G /1 is shown to be lacking in accuracy, and the...

Full description

Saved in:
Bibliographic Details
Published in:Management science 1979-03, Vol.25 (3), p.285-289
Main Authors: Ramaswami, V, Lucantoni, David M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2575-5ad29ab6a031efaed2aa92e7af7ec55d6470b1380513f606f5721cb2b54f5bfb3
cites
container_end_page 289
container_issue 3
container_start_page 285
container_title Management science
container_volume 25
creator Ramaswami, V
Lucantoni, David M
description An approximation suggested by D. Gross and C. M. Harris in their book Fundamentals of Queueing Theory for computing the busy period characteristics in the single server queue with renewal input and general i.i.d. service times commonly denoted by GI / G /1 is shown to be lacking in accuracy, and therefore quite undesirable for practical use. Incidentally, we also demonstrate how for a wide subclass of such queues, computations can be done exactly using practical algorithmic methods.
doi_str_mv 10.1287/mnsc.25.3.285
format article
fullrecord <record><control><sourceid>highwire_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1287_mnsc_25_3_285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>mansci_25_3_285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2575-5ad29ab6a031efaed2aa92e7af7ec55d6470b1380513f606f5721cb2b54f5bfb3</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgUQpjOxRFxac2k4vTsZSQSkqtEgwW05iUyPyITsF-u9xGj5GhtNJ9nOvrUPonJKQsoSPy8rlIYMwClkCB2hAgcUYgNBDNCCEAaYpSY_RiXOvhBCe8HiA1g91qzBeVUG7UcG9sqZ1Qa0DWQWjadPY-tOUsjV1NQraem-utm4XrD2siw52R_PFeD6mweNWbdUpOtLyzamz7z5EzzfXT7NbvFzNF7PpEucMOGCQBUtlFksSUaWlKpiUKVNcaq5ygCKecJLRKCFAIx2TWANnNM9YBhMNmc6iIcJ9bm5r56zSorH-q3YnKBHdOkS3DsFARMKvw_u73lvVqPwXm6qs7V6-i0h2Wu580ZSnvhlfka-mu0vAB6Vi05Y-7LIPM5X24-7fty96vjEvmw9jlfiZK6WH5k9-AfjkiAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Note--On the Merits of an "Approximation" to the Busy Period of the GI/G/1 Queue</title><source>Informs</source><source>ABI/INFORM Global</source><source>BSC - Ebsco (Business Source Ultimate)</source><source>JSTOR</source><creator>Ramaswami, V ; Lucantoni, David M</creator><creatorcontrib>Ramaswami, V ; Lucantoni, David M</creatorcontrib><description>An approximation suggested by D. Gross and C. M. Harris in their book Fundamentals of Queueing Theory for computing the busy period characteristics in the single server queue with renewal input and general i.i.d. service times commonly denoted by GI / G /1 is shown to be lacking in accuracy, and therefore quite undesirable for practical use. Incidentally, we also demonstrate how for a wide subclass of such queues, computations can be done exactly using practical algorithmic methods.</description><identifier>ISSN: 0025-1909</identifier><identifier>EISSN: 1526-5501</identifier><identifier>DOI: 10.1287/mnsc.25.3.285</identifier><language>eng</language><publisher>INFORMS</publisher><subject>probability: renewal processes ; queues: busy period analysis</subject><ispartof>Management science, 1979-03, Vol.25 (3), p.285-289</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2575-5ad29ab6a031efaed2aa92e7af7ec55d6470b1380513f606f5721cb2b54f5bfb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mnsc.25.3.285$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,3679,27900,27901,62588</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/inmormnsc/v_3a25_3ay_3a1979_3ai_3a3_3ap_3a285-289.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramaswami, V</creatorcontrib><creatorcontrib>Lucantoni, David M</creatorcontrib><title>Note--On the Merits of an "Approximation" to the Busy Period of the GI/G/1 Queue</title><title>Management science</title><description>An approximation suggested by D. Gross and C. M. Harris in their book Fundamentals of Queueing Theory for computing the busy period characteristics in the single server queue with renewal input and general i.i.d. service times commonly denoted by GI / G /1 is shown to be lacking in accuracy, and therefore quite undesirable for practical use. Incidentally, we also demonstrate how for a wide subclass of such queues, computations can be done exactly using practical algorithmic methods.</description><subject>probability: renewal processes</subject><subject>queues: busy period analysis</subject><issn>0025-1909</issn><issn>1526-5501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1979</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQBmALgUQpjOxRFxac2k4vTsZSQSkqtEgwW05iUyPyITsF-u9xGj5GhtNJ9nOvrUPonJKQsoSPy8rlIYMwClkCB2hAgcUYgNBDNCCEAaYpSY_RiXOvhBCe8HiA1g91qzBeVUG7UcG9sqZ1Qa0DWQWjadPY-tOUsjV1NQraem-utm4XrD2siw52R_PFeD6mweNWbdUpOtLyzamz7z5EzzfXT7NbvFzNF7PpEucMOGCQBUtlFksSUaWlKpiUKVNcaq5ygCKecJLRKCFAIx2TWANnNM9YBhMNmc6iIcJ9bm5r56zSorH-q3YnKBHdOkS3DsFARMKvw_u73lvVqPwXm6qs7V6-i0h2Wu580ZSnvhlfka-mu0vAB6Vi05Y-7LIPM5X24-7fty96vjEvmw9jlfiZK6WH5k9-AfjkiAw</recordid><startdate>197903</startdate><enddate>197903</enddate><creator>Ramaswami, V</creator><creator>Lucantoni, David M</creator><general>INFORMS</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197903</creationdate><title>Note--On the Merits of an "Approximation" to the Busy Period of the GI/G/1 Queue</title><author>Ramaswami, V ; Lucantoni, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2575-5ad29ab6a031efaed2aa92e7af7ec55d6470b1380513f606f5721cb2b54f5bfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1979</creationdate><topic>probability: renewal processes</topic><topic>queues: busy period analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramaswami, V</creatorcontrib><creatorcontrib>Lucantoni, David M</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>Management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramaswami, V</au><au>Lucantoni, David M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Note--On the Merits of an "Approximation" to the Busy Period of the GI/G/1 Queue</atitle><jtitle>Management science</jtitle><date>1979-03</date><risdate>1979</risdate><volume>25</volume><issue>3</issue><spage>285</spage><epage>289</epage><pages>285-289</pages><issn>0025-1909</issn><eissn>1526-5501</eissn><abstract>An approximation suggested by D. Gross and C. M. Harris in their book Fundamentals of Queueing Theory for computing the busy period characteristics in the single server queue with renewal input and general i.i.d. service times commonly denoted by GI / G /1 is shown to be lacking in accuracy, and therefore quite undesirable for practical use. Incidentally, we also demonstrate how for a wide subclass of such queues, computations can be done exactly using practical algorithmic methods.</abstract><pub>INFORMS</pub><doi>10.1287/mnsc.25.3.285</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-1909
ispartof Management science, 1979-03, Vol.25 (3), p.285-289
issn 0025-1909
1526-5501
language eng
recordid cdi_crossref_primary_10_1287_mnsc_25_3_285
source Informs; ABI/INFORM Global; BSC - Ebsco (Business Source Ultimate); JSTOR
subjects probability: renewal processes
queues: busy period analysis
title Note--On the Merits of an "Approximation" to the Busy Period of the GI/G/1 Queue
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T16%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-highwire_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Note--On%20the%20Merits%20of%20an%20%22Approximation%22%20to%20the%20Busy%20Period%20of%20the%20GI/G/1%20Queue&rft.jtitle=Management%20science&rft.au=Ramaswami,%20V&rft.date=1979-03&rft.volume=25&rft.issue=3&rft.spage=285&rft.epage=289&rft.pages=285-289&rft.issn=0025-1909&rft.eissn=1526-5501&rft_id=info:doi/10.1287/mnsc.25.3.285&rft_dat=%3Chighwire_cross%3Emansci_25_3_285%3C/highwire_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2575-5ad29ab6a031efaed2aa92e7af7ec55d6470b1380513f606f5721cb2b54f5bfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true