Loading…
Note--On the Merits of an "Approximation" to the Busy Period of the GI/G/1 Queue
An approximation suggested by D. Gross and C. M. Harris in their book Fundamentals of Queueing Theory for computing the busy period characteristics in the single server queue with renewal input and general i.i.d. service times commonly denoted by GI / G /1 is shown to be lacking in accuracy, and the...
Saved in:
Published in: | Management science 1979-03, Vol.25 (3), p.285-289 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2575-5ad29ab6a031efaed2aa92e7af7ec55d6470b1380513f606f5721cb2b54f5bfb3 |
---|---|
cites | |
container_end_page | 289 |
container_issue | 3 |
container_start_page | 285 |
container_title | Management science |
container_volume | 25 |
creator | Ramaswami, V Lucantoni, David M |
description | An approximation suggested by D. Gross and C. M. Harris in their book Fundamentals of Queueing Theory for computing the busy period characteristics in the single server queue with renewal input and general i.i.d. service times commonly denoted by GI / G /1 is shown to be lacking in accuracy, and therefore quite undesirable for practical use. Incidentally, we also demonstrate how for a wide subclass of such queues, computations can be done exactly using practical algorithmic methods. |
doi_str_mv | 10.1287/mnsc.25.3.285 |
format | article |
fullrecord | <record><control><sourceid>highwire_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1287_mnsc_25_3_285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>mansci_25_3_285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2575-5ad29ab6a031efaed2aa92e7af7ec55d6470b1380513f606f5721cb2b54f5bfb3</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgUQpjOxRFxac2k4vTsZSQSkqtEgwW05iUyPyITsF-u9xGj5GhtNJ9nOvrUPonJKQsoSPy8rlIYMwClkCB2hAgcUYgNBDNCCEAaYpSY_RiXOvhBCe8HiA1g91qzBeVUG7UcG9sqZ1Qa0DWQWjadPY-tOUsjV1NQraem-utm4XrD2siw52R_PFeD6mweNWbdUpOtLyzamz7z5EzzfXT7NbvFzNF7PpEucMOGCQBUtlFksSUaWlKpiUKVNcaq5ygCKecJLRKCFAIx2TWANnNM9YBhMNmc6iIcJ9bm5r56zSorH-q3YnKBHdOkS3DsFARMKvw_u73lvVqPwXm6qs7V6-i0h2Wu580ZSnvhlfka-mu0vAB6Vi05Y-7LIPM5X24-7fty96vjEvmw9jlfiZK6WH5k9-AfjkiAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Note--On the Merits of an "Approximation" to the Busy Period of the GI/G/1 Queue</title><source>Informs</source><source>ABI/INFORM Global</source><source>BSC - Ebsco (Business Source Ultimate)</source><source>JSTOR</source><creator>Ramaswami, V ; Lucantoni, David M</creator><creatorcontrib>Ramaswami, V ; Lucantoni, David M</creatorcontrib><description>An approximation suggested by D. Gross and C. M. Harris in their book Fundamentals of Queueing Theory for computing the busy period characteristics in the single server queue with renewal input and general i.i.d. service times commonly denoted by GI / G /1 is shown to be lacking in accuracy, and therefore quite undesirable for practical use. Incidentally, we also demonstrate how for a wide subclass of such queues, computations can be done exactly using practical algorithmic methods.</description><identifier>ISSN: 0025-1909</identifier><identifier>EISSN: 1526-5501</identifier><identifier>DOI: 10.1287/mnsc.25.3.285</identifier><language>eng</language><publisher>INFORMS</publisher><subject>probability: renewal processes ; queues: busy period analysis</subject><ispartof>Management science, 1979-03, Vol.25 (3), p.285-289</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2575-5ad29ab6a031efaed2aa92e7af7ec55d6470b1380513f606f5721cb2b54f5bfb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mnsc.25.3.285$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,3679,27900,27901,62588</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/inmormnsc/v_3a25_3ay_3a1979_3ai_3a3_3ap_3a285-289.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramaswami, V</creatorcontrib><creatorcontrib>Lucantoni, David M</creatorcontrib><title>Note--On the Merits of an "Approximation" to the Busy Period of the GI/G/1 Queue</title><title>Management science</title><description>An approximation suggested by D. Gross and C. M. Harris in their book Fundamentals of Queueing Theory for computing the busy period characteristics in the single server queue with renewal input and general i.i.d. service times commonly denoted by GI / G /1 is shown to be lacking in accuracy, and therefore quite undesirable for practical use. Incidentally, we also demonstrate how for a wide subclass of such queues, computations can be done exactly using practical algorithmic methods.</description><subject>probability: renewal processes</subject><subject>queues: busy period analysis</subject><issn>0025-1909</issn><issn>1526-5501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1979</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQBmALgUQpjOxRFxac2k4vTsZSQSkqtEgwW05iUyPyITsF-u9xGj5GhtNJ9nOvrUPonJKQsoSPy8rlIYMwClkCB2hAgcUYgNBDNCCEAaYpSY_RiXOvhBCe8HiA1g91qzBeVUG7UcG9sqZ1Qa0DWQWjadPY-tOUsjV1NQraem-utm4XrD2siw52R_PFeD6mweNWbdUpOtLyzamz7z5EzzfXT7NbvFzNF7PpEucMOGCQBUtlFksSUaWlKpiUKVNcaq5ygCKecJLRKCFAIx2TWANnNM9YBhMNmc6iIcJ9bm5r56zSorH-q3YnKBHdOkS3DsFARMKvw_u73lvVqPwXm6qs7V6-i0h2Wu580ZSnvhlfka-mu0vAB6Vi05Y-7LIPM5X24-7fty96vjEvmw9jlfiZK6WH5k9-AfjkiAw</recordid><startdate>197903</startdate><enddate>197903</enddate><creator>Ramaswami, V</creator><creator>Lucantoni, David M</creator><general>INFORMS</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197903</creationdate><title>Note--On the Merits of an "Approximation" to the Busy Period of the GI/G/1 Queue</title><author>Ramaswami, V ; Lucantoni, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2575-5ad29ab6a031efaed2aa92e7af7ec55d6470b1380513f606f5721cb2b54f5bfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1979</creationdate><topic>probability: renewal processes</topic><topic>queues: busy period analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramaswami, V</creatorcontrib><creatorcontrib>Lucantoni, David M</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>Management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramaswami, V</au><au>Lucantoni, David M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Note--On the Merits of an "Approximation" to the Busy Period of the GI/G/1 Queue</atitle><jtitle>Management science</jtitle><date>1979-03</date><risdate>1979</risdate><volume>25</volume><issue>3</issue><spage>285</spage><epage>289</epage><pages>285-289</pages><issn>0025-1909</issn><eissn>1526-5501</eissn><abstract>An approximation suggested by D. Gross and C. M. Harris in their book Fundamentals of Queueing Theory for computing the busy period characteristics in the single server queue with renewal input and general i.i.d. service times commonly denoted by GI / G /1 is shown to be lacking in accuracy, and therefore quite undesirable for practical use. Incidentally, we also demonstrate how for a wide subclass of such queues, computations can be done exactly using practical algorithmic methods.</abstract><pub>INFORMS</pub><doi>10.1287/mnsc.25.3.285</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-1909 |
ispartof | Management science, 1979-03, Vol.25 (3), p.285-289 |
issn | 0025-1909 1526-5501 |
language | eng |
recordid | cdi_crossref_primary_10_1287_mnsc_25_3_285 |
source | Informs; ABI/INFORM Global; BSC - Ebsco (Business Source Ultimate); JSTOR |
subjects | probability: renewal processes queues: busy period analysis |
title | Note--On the Merits of an "Approximation" to the Busy Period of the GI/G/1 Queue |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T16%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-highwire_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Note--On%20the%20Merits%20of%20an%20%22Approximation%22%20to%20the%20Busy%20Period%20of%20the%20GI/G/1%20Queue&rft.jtitle=Management%20science&rft.au=Ramaswami,%20V&rft.date=1979-03&rft.volume=25&rft.issue=3&rft.spage=285&rft.epage=289&rft.pages=285-289&rft.issn=0025-1909&rft.eissn=1526-5501&rft_id=info:doi/10.1287/mnsc.25.3.285&rft_dat=%3Chighwire_cross%3Emansci_25_3_285%3C/highwire_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2575-5ad29ab6a031efaed2aa92e7af7ec55d6470b1380513f606f5721cb2b54f5bfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |