Loading…

Research on Wave Phenomena in Hydraulic Lines : (7th Report, theoretical Investigation on End Correction Problem - Part 1, Mathematical Analysis of Flow)

This paper mathematically analyzes the flow structure and convective nonlinearity in the 'end correction' problem. The Laplace equation of the velocity potential is rigorously solved for a boundary geometry formed by a plane wall and a circular aperture in it. Applying three different kind...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of JSME 1982, Vol.25(203), pp.782-788
Main Authors: WASHIO, Seiichi, KONISHI, Tadataka
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 788
container_issue 203
container_start_page 782
container_title Bulletin of JSME
container_volume 25
creator WASHIO, Seiichi
KONISHI, Tadataka
description This paper mathematically analyzes the flow structure and convective nonlinearity in the 'end correction' problem. The Laplace equation of the velocity potential is rigorously solved for a boundary geometry formed by a plane wall and a circular aperture in it. Applying three different kinds of flow conditions over the aperture to the solution, we obtain three different values of end correction and functional expressions for the potential and velocities. One of those end corrections proves to be larger than (8/3π)α(α ; radius of aperture) which Rayleigh has regarded as the upper limit. The distribution patterns of the potential and velocities in the flow are shown in diagrams. Moreover the Bernoulli equation gives the pressure and makes it possible to theoretically estimate the convective nonlinearity caused by the kinetic energy. The effects of hamonic wave-distortion on the end correction impedance due to this nonlinearity are also discussed.
doi_str_mv 10.1299/jsme1958.25.782
format article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1299_jsme1958_25_782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_jsme1958_25_203_25_203_782_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3812-d91d6d7189b62123b96edebb8a3b813ca2582d2cb0682f86211eecefa0b50d293</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhhdRsH6cvc5Roam7mybdeCvFWqFiEcVjmGwmZkuyK7ux0p_ivzVaFYSBF4bnGZiXsTPBR0Jm2eU6tCSyRI1kMpoouccGQikRibFM99mAcymieJKOD9lRCGvOx1mSyAH7eKBA6HUNzsIzbghWNVnXkkUwFhbb0uNbYzQsjaUAV3A-6Wp4oFfnuyF0NTlPndHYwK3dUOjMC3amP9XPtS1h5rwn_b1ZeVc01EIEK_QdiCHcYe-3uNOnFpttMAFcBfPGvV-csIMKm0CnP3nMnubXj7NFtLy_uZ1Nl5GOlZBRmYkyLSdCZUUqhYyLLKWSikJhXCgRa5SJkqXUBU-VrFTPCCJNFfIi4aXM4mN2uburvQvBU5W_etOi3-aC51_N5r_N5jLJ-2Z7Y7Ez1qHDF_rj-7eMbugfL3n8G736h-gafU42_gQ2O4cL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Research on Wave Phenomena in Hydraulic Lines : (7th Report, theoretical Investigation on End Correction Problem - Part 1, Mathematical Analysis of Flow)</title><source>J-STAGE Freely Available Titles - English</source><creator>WASHIO, Seiichi ; KONISHI, Tadataka</creator><creatorcontrib>WASHIO, Seiichi ; KONISHI, Tadataka</creatorcontrib><description>This paper mathematically analyzes the flow structure and convective nonlinearity in the 'end correction' problem. The Laplace equation of the velocity potential is rigorously solved for a boundary geometry formed by a plane wall and a circular aperture in it. Applying three different kinds of flow conditions over the aperture to the solution, we obtain three different values of end correction and functional expressions for the potential and velocities. One of those end corrections proves to be larger than (8/3π)α(α ; radius of aperture) which Rayleigh has regarded as the upper limit. The distribution patterns of the potential and velocities in the flow are shown in diagrams. Moreover the Bernoulli equation gives the pressure and makes it possible to theoretically estimate the convective nonlinearity caused by the kinetic energy. The effects of hamonic wave-distortion on the end correction impedance due to this nonlinearity are also discussed.</description><identifier>ISSN: 0021-3764</identifier><identifier>EISSN: 1881-1426</identifier><identifier>DOI: 10.1299/jsme1958.25.782</identifier><language>eng</language><publisher>The Japan Society of Mechanical Engineers</publisher><ispartof>Bulletin of JSME, 1982, Vol.25(203), pp.782-788</ispartof><rights>The Japan Society of Mechanical Engineers</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1882,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>WASHIO, Seiichi</creatorcontrib><creatorcontrib>KONISHI, Tadataka</creatorcontrib><title>Research on Wave Phenomena in Hydraulic Lines : (7th Report, theoretical Investigation on End Correction Problem - Part 1, Mathematical Analysis of Flow)</title><title>Bulletin of JSME</title><addtitle>Bulletin of JSME</addtitle><description>This paper mathematically analyzes the flow structure and convective nonlinearity in the 'end correction' problem. The Laplace equation of the velocity potential is rigorously solved for a boundary geometry formed by a plane wall and a circular aperture in it. Applying three different kinds of flow conditions over the aperture to the solution, we obtain three different values of end correction and functional expressions for the potential and velocities. One of those end corrections proves to be larger than (8/3π)α(α ; radius of aperture) which Rayleigh has regarded as the upper limit. The distribution patterns of the potential and velocities in the flow are shown in diagrams. Moreover the Bernoulli equation gives the pressure and makes it possible to theoretically estimate the convective nonlinearity caused by the kinetic energy. The effects of hamonic wave-distortion on the end correction impedance due to this nonlinearity are also discussed.</description><issn>0021-3764</issn><issn>1881-1426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNpVkE1Lw0AQhhdRsH6cvc5Roam7mybdeCvFWqFiEcVjmGwmZkuyK7ux0p_ivzVaFYSBF4bnGZiXsTPBR0Jm2eU6tCSyRI1kMpoouccGQikRibFM99mAcymieJKOD9lRCGvOx1mSyAH7eKBA6HUNzsIzbghWNVnXkkUwFhbb0uNbYzQsjaUAV3A-6Wp4oFfnuyF0NTlPndHYwK3dUOjMC3amP9XPtS1h5rwn_b1ZeVc01EIEK_QdiCHcYe-3uNOnFpttMAFcBfPGvV-csIMKm0CnP3nMnubXj7NFtLy_uZ1Nl5GOlZBRmYkyLSdCZUUqhYyLLKWSikJhXCgRa5SJkqXUBU-VrFTPCCJNFfIi4aXM4mN2uburvQvBU5W_etOi3-aC51_N5r_N5jLJ-2Z7Y7Ez1qHDF_rj-7eMbugfL3n8G736h-gafU42_gQ2O4cL</recordid><startdate>1982</startdate><enddate>1982</enddate><creator>WASHIO, Seiichi</creator><creator>KONISHI, Tadataka</creator><general>The Japan Society of Mechanical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1982</creationdate><title>Research on Wave Phenomena in Hydraulic Lines : (7th Report, theoretical Investigation on End Correction Problem - Part 1, Mathematical Analysis of Flow)</title><author>WASHIO, Seiichi ; KONISHI, Tadataka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3812-d91d6d7189b62123b96edebb8a3b813ca2582d2cb0682f86211eecefa0b50d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><toplevel>online_resources</toplevel><creatorcontrib>WASHIO, Seiichi</creatorcontrib><creatorcontrib>KONISHI, Tadataka</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of JSME</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WASHIO, Seiichi</au><au>KONISHI, Tadataka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Wave Phenomena in Hydraulic Lines : (7th Report, theoretical Investigation on End Correction Problem - Part 1, Mathematical Analysis of Flow)</atitle><jtitle>Bulletin of JSME</jtitle><addtitle>Bulletin of JSME</addtitle><date>1982</date><risdate>1982</risdate><volume>25</volume><issue>203</issue><spage>782</spage><epage>788</epage><pages>782-788</pages><issn>0021-3764</issn><eissn>1881-1426</eissn><abstract>This paper mathematically analyzes the flow structure and convective nonlinearity in the 'end correction' problem. The Laplace equation of the velocity potential is rigorously solved for a boundary geometry formed by a plane wall and a circular aperture in it. Applying three different kinds of flow conditions over the aperture to the solution, we obtain three different values of end correction and functional expressions for the potential and velocities. One of those end corrections proves to be larger than (8/3π)α(α ; radius of aperture) which Rayleigh has regarded as the upper limit. The distribution patterns of the potential and velocities in the flow are shown in diagrams. Moreover the Bernoulli equation gives the pressure and makes it possible to theoretically estimate the convective nonlinearity caused by the kinetic energy. The effects of hamonic wave-distortion on the end correction impedance due to this nonlinearity are also discussed.</abstract><pub>The Japan Society of Mechanical Engineers</pub><doi>10.1299/jsme1958.25.782</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-3764
ispartof Bulletin of JSME, 1982, Vol.25(203), pp.782-788
issn 0021-3764
1881-1426
language eng
recordid cdi_crossref_primary_10_1299_jsme1958_25_782
source J-STAGE Freely Available Titles - English
title Research on Wave Phenomena in Hydraulic Lines : (7th Report, theoretical Investigation on End Correction Problem - Part 1, Mathematical Analysis of Flow)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Wave%20Phenomena%20in%20Hydraulic%20Lines%20:%20(7th%20Report,%20theoretical%20Investigation%20on%20End%20Correction%20Problem%20-%20Part%201,%20Mathematical%20Analysis%20of%20Flow)&rft.jtitle=Bulletin%20of%20JSME&rft.au=WASHIO,%20Seiichi&rft.date=1982&rft.volume=25&rft.issue=203&rft.spage=782&rft.epage=788&rft.pages=782-788&rft.issn=0021-3764&rft.eissn=1881-1426&rft_id=info:doi/10.1299/jsme1958.25.782&rft_dat=%3Cjstage_cross%3Earticle_jsme1958_25_203_25_203_782_article_char_en%3C/jstage_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3812-d91d6d7189b62123b96edebb8a3b813ca2582d2cb0682f86211eecefa0b50d293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true