Loading…
Update for the Drag Force on an Injected Pellet and Target Fabrication for Inertial Fusion
To create a conceptual design of a tracking system of a target injected into a wet-walled, laser-fusion reactor, the influence of residual gas on the target trajectory is discussed based on a kinetic model, assuming all of the impinging molecules are adsorbed on the target surface. The model targets...
Saved in:
Published in: | Fusion science and technology 2003-05, Vol.43 (3), p.339-345 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To create a conceptual design of a tracking system of a target injected into a wet-walled, laser-fusion reactor, the influence of residual gas on the target trajectory is discussed based on a kinetic model, assuming all of the impinging molecules are adsorbed on the target surface. The model targets are a high-gain target for central ignition and a fast-ignition target with a cone as an optical guide for an additional heating laser. In the case of a fast-ignition target, tracking in the reactor might be skipped, depending on its condition, because of the heavy cone. Recent activities in fabrication of the fast-ignition target are briefly mentioned. |
---|---|
ISSN: | 1536-1055 1943-7641 |
DOI: | 10.13182/FST03-A276 |