Loading…

Criticality Safety and Sensitivity Analyses of PWR Spent Nuclear Fuel Repository Facilities

Monte Carlo criticality safety and sensitivity calculations of pressurized water reactor (PWR) spent nuclear fuel repository facilities for the Slovenian nuclear power plant Krsko are presented. The MCNP4C code was deployed to model and assess the neutron multiplication parameters of pool-based stor...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear technology 2005-01, Vol.149 (1), p.1-13
Main Authors: Maučec, Marko, Glumac, Bogdan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Monte Carlo criticality safety and sensitivity calculations of pressurized water reactor (PWR) spent nuclear fuel repository facilities for the Slovenian nuclear power plant Krsko are presented. The MCNP4C code was deployed to model and assess the neutron multiplication parameters of pool-based storage and dry transport containers under various loading patterns and moderating conditions. To comply with standard safety requirements, fresh 4.25% enriched nuclear fuel was assumed. The impact of potential optimum moderation due to water steam or foam formation as well as of different interpretations, of neutron multiplication through varying the system boundary conditions was elaborated. The simulations indicate that in the case of compact (all rack locations filled with fresh fuel) single or "double tiering" loading, the supercriticality can occur under the conditions of enhanced neutron moderation, due to accidentally reduced density of cooling water. Under standard operational conditions the effective multiplication factor (k eff ) of pool-based storage facility remains below the specified safety limit of 0.95. The nuclear safety requirements are fulfilled even when the fuel elements are arranged at a minimal distance, which can be initiated, for example, by an earthquake. The dry container in its recommended loading scheme with 26 fuel elements represents a safe alternative for the repository of fresh fuel. Even in the case of complete water flooding, the k eff remains below the specified safety level of 0.98. The criticality safety limit may however be exceeded with larger amounts of loaded fuel assemblies (i.e., 32). Additional Monte Carlo criticality safety analyses are scheduled to consider the "burnup credit" of PWR spent nuclear fuel, based on the ongoing calculation of typical burnup activities.
ISSN:0029-5450
1943-7471
DOI:10.13182/NT05-A3575