Loading…
Functionalization of the interlayer surfaces of kaolinite by alkylammonium groups from ionic liquids
The objective of this study was to design new, functional, nanostructured materials from the abundant clay mineral kaolinite, in spite of development problems with the interlayer chemistry of kaolinite because of its non-swelling properties. A particular goal of this work was to graft, in a controll...
Saved in:
Published in: | Clays and clay minerals 2009-10, Vol.57 (5), p.638-648 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objective of this study was to design new, functional, nanostructured materials from the abundant clay mineral kaolinite, in spite of development problems with the interlayer chemistry of kaolinite because of its non-swelling properties. A particular goal of this work was to graft, in a controlled way, alkylammonium groups onto the aluminol interlayer surfaces of kaolinite. This was successfully achieved by soft-chemical approaches, more specifically by the melting intercalation process of alkylammonium ionic liquids which were synthesized for this purpose. The resulting nanohybrid materials were characterized chemically and structurally by X-ray diffraction analysis, thermal analysis (TG/DTA), 13C cross polarization magic angle spinning nuclear magnetic resonance spectroscopy, and Fourier-transform infrared spectroscopy. The amount of grafted organic material was quantified from TGA results. Alkylammonium salts with a short alkyl chain were grafted directly using a melting reaction at 180°C under N2 involving the in situ displacement of dimethylsulfoxide (DMSO) from a DMSO-kaolinite pre-intercalate; for longer alkyl chains, the grafting was done in two steps. In the first step, the corresponding amino-alcohol was grafted into the kaolinite by displacement of DMSO from the interlayer space. The second step consisted of quaternarization of the grafted material by reaction with iodomethane or iodoethane. |
---|---|
ISSN: | 0009-8604 1552-8367 |
DOI: | 10.1346/CCMN.2009.0570510 |