Loading…

Quantification of surface layer turbulence using sensible heat values from energy balance versus aerodynamic methods

Surface layer optical turbulence values in the form of the refractive index structure function 2 are often calculated from surface layer temperature, moisture, and wind characteristics and compared to measurements from sonic anemometers, differential temperature sensors, and imaging systems. A key d...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2024-06, Vol.63 (16), p.E78
Main Authors: Fiorino, Steven, Raut, Yogendra, Schmidt, Jaclyn, Slabaugh, Laura, Fourman, Blaine, McCrae, Jack, Wilson, Benjamin, Bose-Pillai, Santasri
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Surface layer optical turbulence values in the form of the refractive index structure function 2 are often calculated from surface layer temperature, moisture, and wind characteristics and compared to measurements from sonic anemometers, differential temperature sensors, and imaging systems. A key derived component needed in the surface layer turbulence calculations is the sensible heat value. Typically, the sensible heat is calculated using the bulk aerodynamic method that assumes a certain surface roughness and a friction velocity that approximates the turbulence drag on temperature and moisture mixing from the change in the average surface layer vertical wind velocity. These assumptions/approximations generally only apply in free convection conditions. To obtain the sensible heat, a more robust method, which applies when free convection conditions are not occurring, is via an energy balance method such as the Bowen ratio method. The use of the Bowen ratio--the ratio of sensible heat flux to latent heat flux--allows a more direct assessment of the optical turbulence-driving surface layer sensible heat flux than do more traditional assessments of surface layer sensible heat flux. This study compares surface layer 2 values using sensible heat values from the bulk aerodynamic and energy balance methods to quantifications from sonic anemometers posted at different heights on a sensor tower. The research shows that the sensible heat obtained via the Bowen ratio method provides a simpler, more reliable, and more accurate way to calculate surface layer 2 values than what is required to make such calculations from bulk aerodynamic method-obtained sensible heat.
ISSN:1559-128X
2155-3165
DOI:10.1364/AO.521086