Loading…

Controllable direction of liquid jets generated by thermocavitation within a droplet

A high-velocity fluid stream ejected from an orifice or nozzle is a common mechanism to produce liquid jets in inkjet printers or to produce sprays among other applications. In the present research, we show the generation of liquid jets of controllable direction produced within a sessile water dropl...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2017-09, Vol.56 (25), p.7167
Main Authors: Padilla-Martinez, J P, Ramirez-San-Juan, J C, Berrospe-Rodriguez, C, Korneev, N, Aguilar, G, Zaca-Moran, P, Ramos-Garcia, R
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A high-velocity fluid stream ejected from an orifice or nozzle is a common mechanism to produce liquid jets in inkjet printers or to produce sprays among other applications. In the present research, we show the generation of liquid jets of controllable direction produced within a sessile water droplet by thermocavitation. The jets are driven by an acoustic shock wave emitted by the collapse of a hemispherical vapor bubble at the liquid-solid/substrate interface. The generated shock wave is reflected at the liquid-air interface due to acoustic impedance mismatch generating multiple reflections inside the droplet. During each reflection, a force is exerted on the interface driving the jets. Depending on the position of the generation of the bubble within the droplet, the mechanical energy of the shock wave is focused on different regions at the liquid-air interface, ejecting cylindrical liquid jets at different angles. The ejected jet angle dependence is explained by a simple ray tracing model of the propagation of the acoustic shock wave inside the droplet.
ISSN:1559-128X
2155-3165
DOI:10.1364/AO.56.007167