Loading…
High-speed combined NIR low-coherence interferometry for wafer metrology
In this investigation, we describe a combined low-coherence interferometric technique to measure the surface and thickness profiles of wafers at once with high speed. The measurement system consists of a spectrally resolved interferometer to provide and monitor the optical path difference between tw...
Saved in:
Published in: | Applied optics (2004) 2017-11, Vol.56 (31), p.8592 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this investigation, we describe a combined low-coherence interferometric technique to measure the surface and thickness profiles of wafers at once with high speed. The measurement system consists of a spectrally resolved interferometer to provide and monitor the optical path difference between two incident beams of the optical source part and a low-coherence scanning interferometer to measure the dimensions of wafers with significantly shortened scanning length. In the experiments, a silicon wafer and a sapphire wafer, of which both sides are polished, were used as targets of the measurement system for verification of the proposed system. As a result, the scanning length of the low-coherence scanning interferometer was reduced from a few millimeters to a few hundreds of micrometers approximately 10 times. In addition, surface profiles of both sides and thickness profiles were simultaneously measured to reconstruct 3D shapes of wafers. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.56.008592 |