Loading…
Exposure-fusion-based dot-grid image acquisition and recognition for sheet metal strain analysis
Dot-grid images are usually captured for grid strain analysis during sheet metal forming. Due to the strong reflective characteristic of the metallic surfaces, the recorded dot-grid images often have poor quality, low positioning accuracy, and low recognition rate. Therefore, an exposure-fusion-base...
Saved in:
Published in: | Applied optics (2004) 2017-12, Vol.56 (35), p.9706 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dot-grid images are usually captured for grid strain analysis during sheet metal forming. Due to the strong reflective characteristic of the metallic surfaces, the recorded dot-grid images often have poor quality, low positioning accuracy, and low recognition rate. Therefore, an exposure-fusion-based dot-grid image acquisition and recognition approach is proposed. First, multiple dot-grid images are captured at different exposure levels. Subsequently, the recorded multi-exposure dot-grid images are fused into a new high-quality dot-grid image based on exposure fusion technology. Finally, a dot-grid image recognition procedure is developed to detect the dot-grids in the new dot-grid image. Both synthetic and real dot-grid images were tested to verify the performance of the novel approach. When synthetic dot-grid images were tested, the maximum positioning error was up to 6.044 pixels if they were recognized in the traditional way, whereas the maximum positioning error was reduced to 0.132 pixels if the novel approach was adopted. When real dot-grid images were tested, the lowest recognition rate is only 50.52% if they were recognized in the traditional way. Nevertheless, the recognition rate can reach about 91% if the novel approach was employed. These experimental results show the superiorities of the novel approach. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.56.009706 |