Loading…

Thermally tunable high-Q metamaterial and sensing application based on liquid metals

Achieving a high Q-factor metamaterial unit for a precision sensing application is highly demanded in recent years, and most of the developed high-performance sensors based on the high-Q metamaterial units are due to the dielectric/magnetic property changes of the substrate/superstrate. In this pape...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2021-02, Vol.29 (4), p.6069
Main Authors: Ma, Liang, Chen, Dexu, Zheng, Wenxian, Li, Jian, Wang, Wenjiao, Liu, Yifeng, Zhou, Yuedan, Huang, Yongjun, Wen, Guangjun
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Achieving a high Q-factor metamaterial unit for a precision sensing application is highly demanded in recent years, and most of the developed high-performance sensors based on the high-Q metamaterial units are due to the dielectric/magnetic property changes of the substrate/superstrate. In this paper, we propose a completely different sensing metamaterial unit configuration, with good sensing sensitivity and precision properties, based on the thermally tunable liquid metals. Specifically, a basic thermally tunable metamaterial unit, the mercury-inspired split ring resonator (SRR), is firstly presented to theoretically show the magnetic resonance and negative permeability frequency band shift properties under different background temperatures. Then, considering the radiation loss mechanism of the conventional SRR metamaterial unit and based on the physically reliable ability of liquid metals, the modified mercury-inspired Fano and toroidal resonators with a large frequency tuning range and high Q-factor are developed and discussed. The numerical demonstrations have shown that the designed Fano and toroidal resonators have much better sensing precision performances compared to the conventional SRR for the temperature sensing application. The experimental demonstrations have also been used to verify the proposed mercury-based toroidal resonators, and good agreements are achieved.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.418024