Loading…
Influences of edge dislocation on optical vortex transmission
Through theoretical calculation, the analytical expression for the cross-spectral density function of vortex beam with and without edge dislocation during transmission in turbulent atmosphere and free space is obtained. The calculation result is used for researching the influences of edge dislocatio...
Saved in:
Published in: | Optics continuum 2023-11, Vol.2 (11), p.2374 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Through theoretical calculation, the analytical expression for the cross-spectral density function of vortex beam with and without edge dislocation during transmission in turbulent atmosphere and free space is obtained. The calculation result is used for researching the influences of edge dislocation on optical vortex transmission. The research shows that due to the edge dislocation, when the optical vortex's topological charge is greater than +1, the optical vortex will no longer carry out steady transmission in the free space transmission. Instead, it will divide into two optical vortices, and the distance between them will gradually increase as the transmission distance increases. Optical vortex will split in turbulent atmosphere propagation. Due to the edge dislocation, when the topological charge of optical vortex is greater than +2, it is found that the distance between one optical vortex and other optical vortices is much larger than that between other optical vortices. Besides, when there's an edge dislocation, the greater the light wavelength and the structure constant are, the smaller the distance between the optical vortex and the edge dislocation on the source plane is, and the evolution of the optical vortex will be accelerated. |
---|---|
ISSN: | 2770-0208 2770-0208 |
DOI: | 10.1364/OPTCON.505511 |