Loading…
Entanglement demonstration on board a nano-satellite
Global quantum networks for secure communication can be realized using large fleets of satellites distributing entangled photon pairs between ground-based nodes. Because the cost of a satellite depends on its size, the smallest satellites will be most cost-effective. This Letter describes a miniatur...
Saved in:
Published in: | Optica 2020-07, Vol.7 (7), p.734 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Global quantum networks for secure communication can be realized using large fleets of satellites distributing entangled photon pairs between ground-based nodes. Because the cost of a satellite depends on its size, the smallest satellites will be most cost-effective. This Letter describes a miniaturized, polarization entangled, photon-pair source operating on board a nano-satellite. The source violates Bell’s inequality with a Clauser–Horne–Shimony–Holt parameter of 2.60 ± 0.06 . This source can be combined with optical link technologies to enable future quantum communication nano-satellite missions. |
---|---|
ISSN: | 2334-2536 2334-2536 |
DOI: | 10.1364/OPTICA.387306 |