Loading…

Waveguide cavity optomagnonics for microwave-to-optics conversion

Cavity optomagnonics has emerged as a promising platform for studying coherent photon-spin interactions as well as tunable microwave-to-optical conversion. However, current implementation of cavity optomagnonics in ferrimagnetic crystals remains orders of magnitude larger in volume than state-of-the...

Full description

Saved in:
Bibliographic Details
Published in:Optica 2020-10, Vol.7 (10), p.1291
Main Authors: Zhu, Na, Zhang, Xufeng, Han, Xu, Zou, Chang-Ling, Zhong, Changchun, Wang, Chiao-Hsuan, Jiang, Liang, Tang, Hong X.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cavity optomagnonics has emerged as a promising platform for studying coherent photon-spin interactions as well as tunable microwave-to-optical conversion. However, current implementation of cavity optomagnonics in ferrimagnetic crystals remains orders of magnitude larger in volume than state-of-the-art cavity optomechanical devices, resulting in very limited magneto-optical interaction strength. Here, we demonstrate a cavity optomagnonic device based on integrated waveguides and its application for microwave-to-optical conversion. By designing a ferrimagnetic rib waveguide to support multiple magnon modes with maximal mode overlap to the optical field, we realize a high magneto-optical cooperativity, which is three orders of magnitude higher compared to previous records of the magneto-optical cooperativity obtained on polished yttrium iron garnet spheres. Furthermore, we achieve tunable conversion of microwave photons at around 8.45 GHz to 1550 nm light with a broad conversion bandwidth as large as 16.1 MHz. The unique features of the system point to novel applications at the crossroad between quantum optics and magnonics.
ISSN:2334-2536
2334-2536
DOI:10.1364/OPTICA.397967