Loading…

Device-independent verification of Einstein–Podolsky–Rosen steering

Entanglement lies at the heart of quantum mechanics, and has been identified as an essential resource for diverse applications in quantum information. If entanglement could be verified without any trust in the devices of observers, i.e., in a device-independent (DI) way, then high security could be...

Full description

Saved in:
Bibliographic Details
Published in:Optica 2023-01, Vol.10 (1), p.66
Main Authors: Zhao, Yuan-Yuan, Zhang, Chao, Cheng, Shuming, Li, Xinhui, Guo, Yu, Liu, Bi-Heng, Ku, Huan-Yu, Chen, Shin-Liang, Wen, Qiaoyan, Huang, Yun-Feng, Xiang, Guo-Yong, Li, Chuan-Feng, Guo, Guang-Can
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c276t-5cf421a7274c0a33955fe5efd418168dc5673b316b4fe2b4679b97189f2669813
cites cdi_FETCH-LOGICAL-c276t-5cf421a7274c0a33955fe5efd418168dc5673b316b4fe2b4679b97189f2669813
container_end_page
container_issue 1
container_start_page 66
container_title Optica
container_volume 10
creator Zhao, Yuan-Yuan
Zhang, Chao
Cheng, Shuming
Li, Xinhui
Guo, Yu
Liu, Bi-Heng
Ku, Huan-Yu
Chen, Shin-Liang
Wen, Qiaoyan
Huang, Yun-Feng
Xiang, Guo-Yong
Li, Chuan-Feng
Guo, Guang-Can
description Entanglement lies at the heart of quantum mechanics, and has been identified as an essential resource for diverse applications in quantum information. If entanglement could be verified without any trust in the devices of observers, i.e., in a device-independent (DI) way, then high security could be guaranteed for various quantum information processing tasks. In this work, we propose and experimentally demonstrate a DI protocol to certify the presence of entanglement based on Einstein–Podolsky–Rosen (EPR) steering. We first establish the DI verification framework by taking advantage of a measurement-device-independent technique and self-testing, which is able to verify all bipartite EPR-steerable states. In the scenario of three-measurement settings per party, the protocol is robust in tolerance of inefficient measurements and imperfect self-testing. Moreover, a four-photon experiment is implemented for verification beyond Bell nonlocal states. Our work enables further insight into quantum physics and could facilitate realistic implementation of secure quantum information processing tasks.
doi_str_mv 10.1364/OPTICA.456382
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_OPTICA_456382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_OPTICA_456382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-5cf421a7274c0a33955fe5efd418168dc5673b316b4fe2b4679b97189f2669813</originalsourceid><addsrcrecordid>eNpNkM9KAzEQh4MoWGqP3vcFUpNM_myOUmstFFqknpfd7ESiNSmbpdCb7-Ab-iSurAcvMx_8fgzDR8gtZ3MOWt5td_v14n4ulYZSXJCJAJBUKNCX__iazHJ-Y4xxkExZNiGrBzwFhzTEFo84jNgXJ-yCD67uQ4pF8sUyxNxjiN-fX7vUpkN-Pw_4nDLGYgiGdny9IVe-PmSc_e0peXlc7hdPdLNdDX9tqBNG91Q5LwWvjTDSsRrAKuVRoW8lL7kuW6e0gQa4bqRH0UhtbGMNL60XWtuSw5TQ8a7rUs4d-urYhY-6O1ecVb8iqlFENYqAH4XEUr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Device-independent verification of Einstein–Podolsky–Rosen steering</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhao, Yuan-Yuan ; Zhang, Chao ; Cheng, Shuming ; Li, Xinhui ; Guo, Yu ; Liu, Bi-Heng ; Ku, Huan-Yu ; Chen, Shin-Liang ; Wen, Qiaoyan ; Huang, Yun-Feng ; Xiang, Guo-Yong ; Li, Chuan-Feng ; Guo, Guang-Can</creator><creatorcontrib>Zhao, Yuan-Yuan ; Zhang, Chao ; Cheng, Shuming ; Li, Xinhui ; Guo, Yu ; Liu, Bi-Heng ; Ku, Huan-Yu ; Chen, Shin-Liang ; Wen, Qiaoyan ; Huang, Yun-Feng ; Xiang, Guo-Yong ; Li, Chuan-Feng ; Guo, Guang-Can</creatorcontrib><description>Entanglement lies at the heart of quantum mechanics, and has been identified as an essential resource for diverse applications in quantum information. If entanglement could be verified without any trust in the devices of observers, i.e., in a device-independent (DI) way, then high security could be guaranteed for various quantum information processing tasks. In this work, we propose and experimentally demonstrate a DI protocol to certify the presence of entanglement based on Einstein–Podolsky–Rosen (EPR) steering. We first establish the DI verification framework by taking advantage of a measurement-device-independent technique and self-testing, which is able to verify all bipartite EPR-steerable states. In the scenario of three-measurement settings per party, the protocol is robust in tolerance of inefficient measurements and imperfect self-testing. Moreover, a four-photon experiment is implemented for verification beyond Bell nonlocal states. Our work enables further insight into quantum physics and could facilitate realistic implementation of secure quantum information processing tasks.</description><identifier>ISSN: 2334-2536</identifier><identifier>EISSN: 2334-2536</identifier><identifier>DOI: 10.1364/OPTICA.456382</identifier><language>eng</language><ispartof>Optica, 2023-01, Vol.10 (1), p.66</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-5cf421a7274c0a33955fe5efd418168dc5673b316b4fe2b4679b97189f2669813</citedby><cites>FETCH-LOGICAL-c276t-5cf421a7274c0a33955fe5efd418168dc5673b316b4fe2b4679b97189f2669813</cites><orcidid>0000-0002-4569-7716 ; 0000-0001-6815-8929 ; 0000-0003-1350-1739 ; 0000-0001-7774-1622 ; 0000-0003-1909-6703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhao, Yuan-Yuan</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Cheng, Shuming</creatorcontrib><creatorcontrib>Li, Xinhui</creatorcontrib><creatorcontrib>Guo, Yu</creatorcontrib><creatorcontrib>Liu, Bi-Heng</creatorcontrib><creatorcontrib>Ku, Huan-Yu</creatorcontrib><creatorcontrib>Chen, Shin-Liang</creatorcontrib><creatorcontrib>Wen, Qiaoyan</creatorcontrib><creatorcontrib>Huang, Yun-Feng</creatorcontrib><creatorcontrib>Xiang, Guo-Yong</creatorcontrib><creatorcontrib>Li, Chuan-Feng</creatorcontrib><creatorcontrib>Guo, Guang-Can</creatorcontrib><title>Device-independent verification of Einstein–Podolsky–Rosen steering</title><title>Optica</title><description>Entanglement lies at the heart of quantum mechanics, and has been identified as an essential resource for diverse applications in quantum information. If entanglement could be verified without any trust in the devices of observers, i.e., in a device-independent (DI) way, then high security could be guaranteed for various quantum information processing tasks. In this work, we propose and experimentally demonstrate a DI protocol to certify the presence of entanglement based on Einstein–Podolsky–Rosen (EPR) steering. We first establish the DI verification framework by taking advantage of a measurement-device-independent technique and self-testing, which is able to verify all bipartite EPR-steerable states. In the scenario of three-measurement settings per party, the protocol is robust in tolerance of inefficient measurements and imperfect self-testing. Moreover, a four-photon experiment is implemented for verification beyond Bell nonlocal states. Our work enables further insight into quantum physics and could facilitate realistic implementation of secure quantum information processing tasks.</description><issn>2334-2536</issn><issn>2334-2536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM9KAzEQh4MoWGqP3vcFUpNM_myOUmstFFqknpfd7ESiNSmbpdCb7-Ab-iSurAcvMx_8fgzDR8gtZ3MOWt5td_v14n4ulYZSXJCJAJBUKNCX__iazHJ-Y4xxkExZNiGrBzwFhzTEFo84jNgXJ-yCD67uQ4pF8sUyxNxjiN-fX7vUpkN-Pw_4nDLGYgiGdny9IVe-PmSc_e0peXlc7hdPdLNdDX9tqBNG91Q5LwWvjTDSsRrAKuVRoW8lL7kuW6e0gQa4bqRH0UhtbGMNL60XWtuSw5TQ8a7rUs4d-urYhY-6O1ecVb8iqlFENYqAH4XEUr4</recordid><startdate>20230120</startdate><enddate>20230120</enddate><creator>Zhao, Yuan-Yuan</creator><creator>Zhang, Chao</creator><creator>Cheng, Shuming</creator><creator>Li, Xinhui</creator><creator>Guo, Yu</creator><creator>Liu, Bi-Heng</creator><creator>Ku, Huan-Yu</creator><creator>Chen, Shin-Liang</creator><creator>Wen, Qiaoyan</creator><creator>Huang, Yun-Feng</creator><creator>Xiang, Guo-Yong</creator><creator>Li, Chuan-Feng</creator><creator>Guo, Guang-Can</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4569-7716</orcidid><orcidid>https://orcid.org/0000-0001-6815-8929</orcidid><orcidid>https://orcid.org/0000-0003-1350-1739</orcidid><orcidid>https://orcid.org/0000-0001-7774-1622</orcidid><orcidid>https://orcid.org/0000-0003-1909-6703</orcidid></search><sort><creationdate>20230120</creationdate><title>Device-independent verification of Einstein–Podolsky–Rosen steering</title><author>Zhao, Yuan-Yuan ; Zhang, Chao ; Cheng, Shuming ; Li, Xinhui ; Guo, Yu ; Liu, Bi-Heng ; Ku, Huan-Yu ; Chen, Shin-Liang ; Wen, Qiaoyan ; Huang, Yun-Feng ; Xiang, Guo-Yong ; Li, Chuan-Feng ; Guo, Guang-Can</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-5cf421a7274c0a33955fe5efd418168dc5673b316b4fe2b4679b97189f2669813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuan-Yuan</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Cheng, Shuming</creatorcontrib><creatorcontrib>Li, Xinhui</creatorcontrib><creatorcontrib>Guo, Yu</creatorcontrib><creatorcontrib>Liu, Bi-Heng</creatorcontrib><creatorcontrib>Ku, Huan-Yu</creatorcontrib><creatorcontrib>Chen, Shin-Liang</creatorcontrib><creatorcontrib>Wen, Qiaoyan</creatorcontrib><creatorcontrib>Huang, Yun-Feng</creatorcontrib><creatorcontrib>Xiang, Guo-Yong</creatorcontrib><creatorcontrib>Li, Chuan-Feng</creatorcontrib><creatorcontrib>Guo, Guang-Can</creatorcontrib><collection>CrossRef</collection><jtitle>Optica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuan-Yuan</au><au>Zhang, Chao</au><au>Cheng, Shuming</au><au>Li, Xinhui</au><au>Guo, Yu</au><au>Liu, Bi-Heng</au><au>Ku, Huan-Yu</au><au>Chen, Shin-Liang</au><au>Wen, Qiaoyan</au><au>Huang, Yun-Feng</au><au>Xiang, Guo-Yong</au><au>Li, Chuan-Feng</au><au>Guo, Guang-Can</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Device-independent verification of Einstein–Podolsky–Rosen steering</atitle><jtitle>Optica</jtitle><date>2023-01-20</date><risdate>2023</risdate><volume>10</volume><issue>1</issue><spage>66</spage><pages>66-</pages><issn>2334-2536</issn><eissn>2334-2536</eissn><abstract>Entanglement lies at the heart of quantum mechanics, and has been identified as an essential resource for diverse applications in quantum information. If entanglement could be verified without any trust in the devices of observers, i.e., in a device-independent (DI) way, then high security could be guaranteed for various quantum information processing tasks. In this work, we propose and experimentally demonstrate a DI protocol to certify the presence of entanglement based on Einstein–Podolsky–Rosen (EPR) steering. We first establish the DI verification framework by taking advantage of a measurement-device-independent technique and self-testing, which is able to verify all bipartite EPR-steerable states. In the scenario of three-measurement settings per party, the protocol is robust in tolerance of inefficient measurements and imperfect self-testing. Moreover, a four-photon experiment is implemented for verification beyond Bell nonlocal states. Our work enables further insight into quantum physics and could facilitate realistic implementation of secure quantum information processing tasks.</abstract><doi>10.1364/OPTICA.456382</doi><orcidid>https://orcid.org/0000-0002-4569-7716</orcidid><orcidid>https://orcid.org/0000-0001-6815-8929</orcidid><orcidid>https://orcid.org/0000-0003-1350-1739</orcidid><orcidid>https://orcid.org/0000-0001-7774-1622</orcidid><orcidid>https://orcid.org/0000-0003-1909-6703</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2334-2536
ispartof Optica, 2023-01, Vol.10 (1), p.66
issn 2334-2536
2334-2536
language eng
recordid cdi_crossref_primary_10_1364_OPTICA_456382
source EZB-FREE-00999 freely available EZB journals
title Device-independent verification of Einstein–Podolsky–Rosen steering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Device-independent%20verification%20of%20Einstein%E2%80%93Podolsky%E2%80%93Rosen%20steering&rft.jtitle=Optica&rft.au=Zhao,%20Yuan-Yuan&rft.date=2023-01-20&rft.volume=10&rft.issue=1&rft.spage=66&rft.pages=66-&rft.issn=2334-2536&rft.eissn=2334-2536&rft_id=info:doi/10.1364/OPTICA.456382&rft_dat=%3Ccrossref%3E10_1364_OPTICA_456382%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c276t-5cf421a7274c0a33955fe5efd418168dc5673b316b4fe2b4679b97189f2669813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true