Loading…
Optical limiter based on PT-symmetry breaking of reflectionless modes
The application of parity–time (PT) symmetry in optics, especially PT-symmetry breaking, has attracted considerable attention as an approach to controlling light propagation. Here, we report optical limiting by two coupled optical cavities with a PT-symmetric spectrum of reflectionless modes. The op...
Saved in:
Published in: | Optica 2023-10, Vol.10 (10), p.1302 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The application of parity–time (PT) symmetry in optics, especially PT-symmetry breaking, has attracted considerable attention as an approach to controlling light propagation. Here, we report optical limiting by two coupled optical cavities with a PT-symmetric spectrum of reflectionless modes. The optical limiting is related to broken PT symmetry due to light-induced changes in one of the cavities. Our experimental implementation involves a three-mirror resonator of alternating layers of ZnS and cryolite with a PT-symmetric spectral degeneracy of two reflectionless modes. The passive optical limiting is demonstrated by measurements of single 532 nm 6 ns laser pulses and thermo-optical simulations. At fluences below 10mJ/cm 2 , the multilayer exhibits a flattop passband at 532 nm. At higher fluences, laser heating combined with the thermo-optic effect in ZnS leads to cavity detuning and PT-symmetry breaking of the reflectionless modes. As a result, the entire multilayer structure quickly becomes highly reflective, protecting itself from laser-induced damage. The cavity detuning mechanism can differ at much higher limiting thresholds and include nonlinearity. |
---|---|
ISSN: | 2334-2536 2334-2536 |
DOI: | 10.1364/OPTICA.497275 |