Loading…
Fractal topological band-gap structure induced by singularities in the one-dimensional Thue–Morse system
The physical origin of the fractal topological band-gap structure in the one-dimensional Thue–Morse system has been revealed, which is characterized by the evolutions of two types of topological singularities with zero-scattering properties and the paths of phase vortex points, which are the mirrore...
Saved in:
Published in: | Photonics research (Washington, DC) DC), 2021-04, Vol.9 (4), p.622 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The physical origin of the fractal topological band-gap structure in the one-dimensional Thue–Morse system has been revealed, which is characterized by the evolutions of two types of topological singularities with zero-scattering properties and the paths of phase vortex points, which are the mirrored paths of the first-type singularities. The field distribution of the upper and lower gap-edge states will interchange when the traditional gaps are closed and reopened. The topologically protected edge-states are found at both traditional gaps and fractal gaps. Our work broadens the topological properties of quasicrystals or aperiodic systems and provides potential applications in new optoelectronic devices. |
---|---|
ISSN: | 2327-9125 2327-9125 |
DOI: | 10.1364/PRJ.405230 |