Loading…
Chiral single-photon switch-assisted quantum logic gate with a nitrogen-vacancy center in a hybrid system
We propose what we believe is a novel proposal for realizing a quantum C-NOT logic gate, through fabricating an interesting hybrid device with a chiral photon-pulse switch, a single nitrogen-vacancy (NV) center, and an optical microcavity. Three major different practical routes on realizing a chiral...
Saved in:
Published in: | Photonics research (Washington, DC) DC), 2021-03, Vol.9 (3), p.405 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose what we believe is a novel proposal for realizing a quantum C-NOT logic gate, through fabricating an interesting hybrid device with a chiral photon-pulse switch, a single nitrogen-vacancy (NV) center, and an optical microcavity. Three major different practical routes on realizing a chiral photon emitter are discussed, which can implement a chiral control unit via the nonreciprocal emitter–photon interactions, so-called “propagation-direction-dependent” emission. With the assistance of dichromatic microwave driving fields, we carry out the relevant C-NOT operations by engineering the interactions on a single NV spin in a cavity. We note that this logic gate is robust against practical noise and experimental imperfection, and this attempt may evoke wide and fruitful applications in quantum information processing. |
---|---|
ISSN: | 2327-9125 2327-9125 |
DOI: | 10.1364/PRJ.405246 |