Loading…
Near-optimal intense and powerful terahertz source by optical rectification in lithium niobate crystal
Using a 400 μJ ytterbium laser combined with a novel pulse compression technique, we demonstrate a state-of-the-art terahertz (THz) source from the tilted-pulse front pumping scheme in lithium niobate at room temperature with record efficiency of 1.3% capable of generating 74 mW of average power and...
Saved in:
Published in: | Photonics research (Washington, DC) DC), 2022-02, Vol.10 (2), p.340 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using a 400 μJ ytterbium laser combined with a novel pulse compression technique, we demonstrate a state-of-the-art terahertz (THz) source from the tilted-pulse front pumping scheme in lithium niobate at room temperature with record efficiency of 1.3% capable of generating 74 mW of average power and 400 kV/cm at focus. Key points of this demonstration include the use of a pump pulse duration of 280 fs in combination with a stair-step echelon mirror and an off-axis ellipsoidal mirror. This source has unmatched characteristics of generating intense and powerful THz pulses at the same time and remains highly scalable as compared to existing Ti:sapphire-based THz sources pumped in the millijoule range. |
---|---|
ISSN: | 2327-9125 2327-9125 |
DOI: | 10.1364/PRJ.428418 |