Loading…

Dynamic bifunctional THz metasurface via dual-mode decoupling

Metasurfaces have powerful light field manipulation capabilities and have been researched and developed extensively in various fields. With an increasing demand for diverse functionalities, terahertz (THz) metasurfaces are also expanding their domain. In particular, integrating different functionali...

Full description

Saved in:
Bibliographic Details
Published in:Photonics research (Washington, DC) DC), 2022-09, Vol.10 (9), p.2008
Main Authors: Cong, Xuan, Zeng, Hongxin, Wang, Shiqi, Shi, Qiwu, Liang, Shixiong, Sun, Jiandong, Gong, Sen, Lan, Feng, Yang, Ziqiang, Zhang, Yaxin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metasurfaces have powerful light field manipulation capabilities and have been researched and developed extensively in various fields. With an increasing demand for diverse functionalities, terahertz (THz) metasurfaces are also expanding their domain. In particular, integrating different functionalities into a single device is a compelling domain in metasurfaces. In this work, we demonstrate a functionally decoupled THz metasurface that can incorporate any two functions into one metasurface and switch dynamically through external excitation. This proposed metasurface is formed by the combination of split-ring resonators and phase change material vanadium dioxide ( VO 2 ). It operates in the single-ring resonant mode and double-ring resonant mode with varying VO 2 in insulating and metallic states, respectively. More importantly, the phase modulation is independent in two operating modes, and both cover a 360° cross-polarized phase with efficient polarization conversion. This characteristic makes it obtain arbitrary independent phase information on the metasurface with different modes to switch dual functions dynamically. Here, we experimentally demonstrate the functions of a tunable focal length and large-angle focus deflection of a THz off-axis parabolic mirror to verify the dual-function switching characteristics of the functionally decoupled metasurface. The functionally decoupled metasurface developed in this work broadens the way for the research and application of multifunctional modulation devices in the THz band.
ISSN:2327-9125
2327-9125
DOI:10.1364/PRJ.453496