Loading…

In Situ Sensing of Volatile Organic Compounds in Groundwater: First Field Tests of a Mid-Infrared Fiber-Optic Sensing System

A prototype mid-infrared sensor system for the determination of volatile organic pollutants in groundwater was developed and tested under real-world conditions. The sensor comprises a portable Fourier transform infrared spectrometer, coupled to the sensor head via mid-infrared transparent silver hal...

Full description

Saved in:
Bibliographic Details
Published in:Applied spectroscopy 2003-06, Vol.57 (6), p.607-613
Main Authors: Steiner, H., Jakusch, M., Kraft, M., Karlowatz, M., Baumann, T., Niessner, R., Konz, W., Brandenburg, A., Michel, K., Boussard-Plédel, C., Bureau, B., Lucas, J., Reichlin, Y., Katzir, A., Fleischmann, N., Staubmann, K., Allabashi, R., Bayona, J. M., Mizaikoff, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A prototype mid-infrared sensor system for the determination of volatile organic pollutants in groundwater was developed and tested under real-world conditions. The sensor comprises a portable Fourier transform infrared spectrometer, coupled to the sensor head via mid-infrared transparent silver halide fiber-optic cables. A 10 cm unclad middle section of the 6-m-long fiber is coated with ethylene propylene copolymer in order to enrich the analytes within the penetration depth of the evanescent field protruding from the fiber sensor head. A mixture of tetrachloroethylene, dichlorobenzene, diethyl phthalate, and xylene isomers at concentrations in the low ppm region was investigated qualitatively and quantitatively in an artificial aquifer system filled with Munich gravel. This simulated real-world site at a pilot scale enables in situ studies of the sensor response and spreading of the pollutants injected into the system with controlled groundwater flow. The sensor head was immersed into a monitoring well of the aquifer system at a distance of 1 m downstream of the sample inlet and at a depth of 30 cm. Within one hour, the analytes were clearly identified in the fingerprint region of the IR spectrum (1300 to 700 cm−1). The results have been validated by head-space gas chromatography, using samples collected during the field measurement. Five out of six analytes could be discriminated simultaneously; for two of the analytes the quantitative results are in agreement with the reference analysis.
ISSN:0003-7028
1943-3530
DOI:10.1366/000370203322005274