Loading…
Metabolic and molecular responses to calcium soap of fish oil fed to ewes during peripartal period
It has been shown that n-3 long chain fatty acids (n-3 LCFA) are involved in energy/lipid metabolisms, reproductive parameters, and molecular regulations leading to maintained homeostasis. We hypothesized that supplementation of peripartal diets with fish oil (FO), as a source of n-3 LCFA, could imp...
Saved in:
Published in: | Cellular and Molecular Biology 2017-10, Vol.63 (10), p.4-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It has been shown that n-3 long chain fatty acids (n-3 LCFA) are involved in energy/lipid metabolisms, reproductive parameters, and molecular regulations leading to maintained homeostasis. We hypothesized that supplementation of peripartal diets with fish oil (FO), as a source of n-3 LCFA, could improve energy balance and modulate metabolic pressure in a sheep model. Prepartum ewes (n = 24) were fed control (CON) or calcium soap of fish oil (FO) supplemented-diet from four weeks before until three weeks after parturation. Feed intake, body weight (BW) change, plasma metabolites, colostrums/milk composition, and fatty acids profile of milk along with the expression of core microRNAs in glucose and lipid metabolism were evaluated. Prepartal feed intake decreased in FO group (1674 ± 33.26 vs. 1812 ± 35.56) though post-partal intake was similar. Differences in BW were not also significant (55.47 ± 2.07 in CON vs. 53.69 ± 1.94 in FO). No differences were observed in plasma metabolites except for cholesterol that was lower in FO group (56.25 ± 0.71 vs. 53.09 ± 0.61). Milk fat percentage was reduced (8.82 ± 0.49 vs. 7.03 ± 0.45) while the percentage of milk total n-3 LCFA increased in FO group. In accordance, the relative transcript abundance of miR-101 (0.215 ± 0.08) and miR-103 (0.37 ± 0.15) decreased by FO supplementation. Results showed that FO supplementation during peripartal period decreased milk fat, feed intake, plasma cholesterol, milk n-6:n-3 ratio and the expression of miR-101. Although the trend indicated that FO could alter lipid metabolism during transition period, further studies are needed to fully address its effect on energy balance and homeorhetic processes. |
---|---|
ISSN: | 0145-5680 1165-158X |
DOI: | 10.14715/cmb/2017.63.10.2 |