Loading…
Large-scale graph analytics in Aster 6: bringing context to big data discovery
Graph analytics is an important big data discovery technique. Applications include identifying influential employees for retention, detecting fraud in a complex interaction network, and determining product affinities by exploiting community buying patterns. Specialized platforms have emerged to sati...
Saved in:
Published in: | Proceedings of the VLDB Endowment 2014-08, Vol.7 (13), p.1405-1416 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c196t-72a6c1c1ad94fdd69dd4d2bb7637dd053a89d71b21197e310d0fd33ba61295993 |
container_end_page | 1416 |
container_issue | 13 |
container_start_page | 1405 |
container_title | Proceedings of the VLDB Endowment |
container_volume | 7 |
creator | Simmen, David Schnaitter, Karl Davis, Jeff He, Yingjie Lohariwala, Sangeet Mysore, Ajay Shenoi, Vinayak Tan, Mingfeng Xiao, Yu |
description | Graph analytics is an important big data discovery technique. Applications include identifying influential employees for retention, detecting fraud in a complex interaction network, and determining product affinities by exploiting community buying patterns. Specialized platforms have emerged to satisfy the unique processing requirements of large-scale graph analytics; however, these platforms do not enable graph analytics to be combined with other analytics techniques, nor do they work well with the vast ecosystem of SQL-based business applications.
Teradata Aster 6.0 adds support for large-scale graph analytics to its repertoire of analytics capabilities. The solution extends the multi-engine processing architecture with support for bulk synchronous parallel execution, and a specialized graph engine that enables iterative analysis of graph structures. Graph analytics functions written to the vertex-oriented API exposed by the graph engine can be invoked from the context of an SQL query and composed with existing SQL-MR functions, thereby enabling data scientists and business applications to express computations that combine large-scale graph analytics with techniques better suited to a different style of processing. The solution includes a suite of pre-built graph analytic functions adapted for parallel execution. |
doi_str_mv | 10.14778/2733004.2733013 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_2733004_2733013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_2733004_2733013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-72a6c1c1ad94fdd69dd4d2bb7637dd053a89d71b21197e310d0fd33ba61295993</originalsourceid><addsrcrecordid>eNpNzzFPwzAQhmELgURp2Rk9sbnc2Ykdj1UFFCkSC52ti88pQaFUdpb-e6SSgen9pk96hHhAWGPlXPOknTEA1fpSNFdiobEG1YB31__2rbgr5QvANhabhXhsKR-SKpHGJA-ZTp-SjjSepyEWORzlpkwpS7sSNz2NJd3PXYr9y_PHdqfa99e37aZVEb2dlNNkI0Yk9lXPbD1zxbrrnDWOGWpDjWeHnUb0LhkEhp6N6cii9rX3Zing7zfmn1Jy6sMpD9-UzwEhXJxhdobZaX4BQYRDWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large-scale graph analytics in Aster 6: bringing context to big data discovery</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Simmen, David ; Schnaitter, Karl ; Davis, Jeff ; He, Yingjie ; Lohariwala, Sangeet ; Mysore, Ajay ; Shenoi, Vinayak ; Tan, Mingfeng ; Xiao, Yu</creator><creatorcontrib>Simmen, David ; Schnaitter, Karl ; Davis, Jeff ; He, Yingjie ; Lohariwala, Sangeet ; Mysore, Ajay ; Shenoi, Vinayak ; Tan, Mingfeng ; Xiao, Yu</creatorcontrib><description>Graph analytics is an important big data discovery technique. Applications include identifying influential employees for retention, detecting fraud in a complex interaction network, and determining product affinities by exploiting community buying patterns. Specialized platforms have emerged to satisfy the unique processing requirements of large-scale graph analytics; however, these platforms do not enable graph analytics to be combined with other analytics techniques, nor do they work well with the vast ecosystem of SQL-based business applications.
Teradata Aster 6.0 adds support for large-scale graph analytics to its repertoire of analytics capabilities. The solution extends the multi-engine processing architecture with support for bulk synchronous parallel execution, and a specialized graph engine that enables iterative analysis of graph structures. Graph analytics functions written to the vertex-oriented API exposed by the graph engine can be invoked from the context of an SQL query and composed with existing SQL-MR functions, thereby enabling data scientists and business applications to express computations that combine large-scale graph analytics with techniques better suited to a different style of processing. The solution includes a suite of pre-built graph analytic functions adapted for parallel execution.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/2733004.2733013</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2014-08, Vol.7 (13), p.1405-1416</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-72a6c1c1ad94fdd69dd4d2bb7637dd053a89d71b21197e310d0fd33ba61295993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Simmen, David</creatorcontrib><creatorcontrib>Schnaitter, Karl</creatorcontrib><creatorcontrib>Davis, Jeff</creatorcontrib><creatorcontrib>He, Yingjie</creatorcontrib><creatorcontrib>Lohariwala, Sangeet</creatorcontrib><creatorcontrib>Mysore, Ajay</creatorcontrib><creatorcontrib>Shenoi, Vinayak</creatorcontrib><creatorcontrib>Tan, Mingfeng</creatorcontrib><creatorcontrib>Xiao, Yu</creatorcontrib><title>Large-scale graph analytics in Aster 6: bringing context to big data discovery</title><title>Proceedings of the VLDB Endowment</title><description>Graph analytics is an important big data discovery technique. Applications include identifying influential employees for retention, detecting fraud in a complex interaction network, and determining product affinities by exploiting community buying patterns. Specialized platforms have emerged to satisfy the unique processing requirements of large-scale graph analytics; however, these platforms do not enable graph analytics to be combined with other analytics techniques, nor do they work well with the vast ecosystem of SQL-based business applications.
Teradata Aster 6.0 adds support for large-scale graph analytics to its repertoire of analytics capabilities. The solution extends the multi-engine processing architecture with support for bulk synchronous parallel execution, and a specialized graph engine that enables iterative analysis of graph structures. Graph analytics functions written to the vertex-oriented API exposed by the graph engine can be invoked from the context of an SQL query and composed with existing SQL-MR functions, thereby enabling data scientists and business applications to express computations that combine large-scale graph analytics with techniques better suited to a different style of processing. The solution includes a suite of pre-built graph analytic functions adapted for parallel execution.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNzzFPwzAQhmELgURp2Rk9sbnc2Ykdj1UFFCkSC52ti88pQaFUdpb-e6SSgen9pk96hHhAWGPlXPOknTEA1fpSNFdiobEG1YB31__2rbgr5QvANhabhXhsKR-SKpHGJA-ZTp-SjjSepyEWORzlpkwpS7sSNz2NJd3PXYr9y_PHdqfa99e37aZVEb2dlNNkI0Yk9lXPbD1zxbrrnDWOGWpDjWeHnUb0LhkEhp6N6cii9rX3Zing7zfmn1Jy6sMpD9-UzwEhXJxhdobZaX4BQYRDWQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Simmen, David</creator><creator>Schnaitter, Karl</creator><creator>Davis, Jeff</creator><creator>He, Yingjie</creator><creator>Lohariwala, Sangeet</creator><creator>Mysore, Ajay</creator><creator>Shenoi, Vinayak</creator><creator>Tan, Mingfeng</creator><creator>Xiao, Yu</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140801</creationdate><title>Large-scale graph analytics in Aster 6</title><author>Simmen, David ; Schnaitter, Karl ; Davis, Jeff ; He, Yingjie ; Lohariwala, Sangeet ; Mysore, Ajay ; Shenoi, Vinayak ; Tan, Mingfeng ; Xiao, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-72a6c1c1ad94fdd69dd4d2bb7637dd053a89d71b21197e310d0fd33ba61295993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simmen, David</creatorcontrib><creatorcontrib>Schnaitter, Karl</creatorcontrib><creatorcontrib>Davis, Jeff</creatorcontrib><creatorcontrib>He, Yingjie</creatorcontrib><creatorcontrib>Lohariwala, Sangeet</creatorcontrib><creatorcontrib>Mysore, Ajay</creatorcontrib><creatorcontrib>Shenoi, Vinayak</creatorcontrib><creatorcontrib>Tan, Mingfeng</creatorcontrib><creatorcontrib>Xiao, Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simmen, David</au><au>Schnaitter, Karl</au><au>Davis, Jeff</au><au>He, Yingjie</au><au>Lohariwala, Sangeet</au><au>Mysore, Ajay</au><au>Shenoi, Vinayak</au><au>Tan, Mingfeng</au><au>Xiao, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale graph analytics in Aster 6: bringing context to big data discovery</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>7</volume><issue>13</issue><spage>1405</spage><epage>1416</epage><pages>1405-1416</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Graph analytics is an important big data discovery technique. Applications include identifying influential employees for retention, detecting fraud in a complex interaction network, and determining product affinities by exploiting community buying patterns. Specialized platforms have emerged to satisfy the unique processing requirements of large-scale graph analytics; however, these platforms do not enable graph analytics to be combined with other analytics techniques, nor do they work well with the vast ecosystem of SQL-based business applications.
Teradata Aster 6.0 adds support for large-scale graph analytics to its repertoire of analytics capabilities. The solution extends the multi-engine processing architecture with support for bulk synchronous parallel execution, and a specialized graph engine that enables iterative analysis of graph structures. Graph analytics functions written to the vertex-oriented API exposed by the graph engine can be invoked from the context of an SQL query and composed with existing SQL-MR functions, thereby enabling data scientists and business applications to express computations that combine large-scale graph analytics with techniques better suited to a different style of processing. The solution includes a suite of pre-built graph analytic functions adapted for parallel execution.</abstract><doi>10.14778/2733004.2733013</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2150-8097 |
ispartof | Proceedings of the VLDB Endowment, 2014-08, Vol.7 (13), p.1405-1416 |
issn | 2150-8097 2150-8097 |
language | eng |
recordid | cdi_crossref_primary_10_14778_2733004_2733013 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
title | Large-scale graph analytics in Aster 6: bringing context to big data discovery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20graph%20analytics%20in%20Aster%206:%20bringing%20context%20to%20big%20data%20discovery&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Simmen,%20David&rft.date=2014-08-01&rft.volume=7&rft.issue=13&rft.spage=1405&rft.epage=1416&rft.pages=1405-1416&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/2733004.2733013&rft_dat=%3Ccrossref%3E10_14778_2733004_2733013%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c196t-72a6c1c1ad94fdd69dd4d2bb7637dd053a89d71b21197e310d0fd33ba61295993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |