Loading…

Large-scale graph analytics in Aster 6: bringing context to big data discovery

Graph analytics is an important big data discovery technique. Applications include identifying influential employees for retention, detecting fraud in a complex interaction network, and determining product affinities by exploiting community buying patterns. Specialized platforms have emerged to sati...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the VLDB Endowment 2014-08, Vol.7 (13), p.1405-1416
Main Authors: Simmen, David, Schnaitter, Karl, Davis, Jeff, He, Yingjie, Lohariwala, Sangeet, Mysore, Ajay, Shenoi, Vinayak, Tan, Mingfeng, Xiao, Yu
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c196t-72a6c1c1ad94fdd69dd4d2bb7637dd053a89d71b21197e310d0fd33ba61295993
container_end_page 1416
container_issue 13
container_start_page 1405
container_title Proceedings of the VLDB Endowment
container_volume 7
creator Simmen, David
Schnaitter, Karl
Davis, Jeff
He, Yingjie
Lohariwala, Sangeet
Mysore, Ajay
Shenoi, Vinayak
Tan, Mingfeng
Xiao, Yu
description Graph analytics is an important big data discovery technique. Applications include identifying influential employees for retention, detecting fraud in a complex interaction network, and determining product affinities by exploiting community buying patterns. Specialized platforms have emerged to satisfy the unique processing requirements of large-scale graph analytics; however, these platforms do not enable graph analytics to be combined with other analytics techniques, nor do they work well with the vast ecosystem of SQL-based business applications. Teradata Aster 6.0 adds support for large-scale graph analytics to its repertoire of analytics capabilities. The solution extends the multi-engine processing architecture with support for bulk synchronous parallel execution, and a specialized graph engine that enables iterative analysis of graph structures. Graph analytics functions written to the vertex-oriented API exposed by the graph engine can be invoked from the context of an SQL query and composed with existing SQL-MR functions, thereby enabling data scientists and business applications to express computations that combine large-scale graph analytics with techniques better suited to a different style of processing. The solution includes a suite of pre-built graph analytic functions adapted for parallel execution.
doi_str_mv 10.14778/2733004.2733013
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_2733004_2733013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_2733004_2733013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-72a6c1c1ad94fdd69dd4d2bb7637dd053a89d71b21197e310d0fd33ba61295993</originalsourceid><addsrcrecordid>eNpNzzFPwzAQhmELgURp2Rk9sbnc2Ykdj1UFFCkSC52ti88pQaFUdpb-e6SSgen9pk96hHhAWGPlXPOknTEA1fpSNFdiobEG1YB31__2rbgr5QvANhabhXhsKR-SKpHGJA-ZTp-SjjSepyEWORzlpkwpS7sSNz2NJd3PXYr9y_PHdqfa99e37aZVEb2dlNNkI0Yk9lXPbD1zxbrrnDWOGWpDjWeHnUb0LhkEhp6N6cii9rX3Zing7zfmn1Jy6sMpD9-UzwEhXJxhdobZaX4BQYRDWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large-scale graph analytics in Aster 6: bringing context to big data discovery</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Simmen, David ; Schnaitter, Karl ; Davis, Jeff ; He, Yingjie ; Lohariwala, Sangeet ; Mysore, Ajay ; Shenoi, Vinayak ; Tan, Mingfeng ; Xiao, Yu</creator><creatorcontrib>Simmen, David ; Schnaitter, Karl ; Davis, Jeff ; He, Yingjie ; Lohariwala, Sangeet ; Mysore, Ajay ; Shenoi, Vinayak ; Tan, Mingfeng ; Xiao, Yu</creatorcontrib><description>Graph analytics is an important big data discovery technique. Applications include identifying influential employees for retention, detecting fraud in a complex interaction network, and determining product affinities by exploiting community buying patterns. Specialized platforms have emerged to satisfy the unique processing requirements of large-scale graph analytics; however, these platforms do not enable graph analytics to be combined with other analytics techniques, nor do they work well with the vast ecosystem of SQL-based business applications. Teradata Aster 6.0 adds support for large-scale graph analytics to its repertoire of analytics capabilities. The solution extends the multi-engine processing architecture with support for bulk synchronous parallel execution, and a specialized graph engine that enables iterative analysis of graph structures. Graph analytics functions written to the vertex-oriented API exposed by the graph engine can be invoked from the context of an SQL query and composed with existing SQL-MR functions, thereby enabling data scientists and business applications to express computations that combine large-scale graph analytics with techniques better suited to a different style of processing. The solution includes a suite of pre-built graph analytic functions adapted for parallel execution.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/2733004.2733013</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2014-08, Vol.7 (13), p.1405-1416</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-72a6c1c1ad94fdd69dd4d2bb7637dd053a89d71b21197e310d0fd33ba61295993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Simmen, David</creatorcontrib><creatorcontrib>Schnaitter, Karl</creatorcontrib><creatorcontrib>Davis, Jeff</creatorcontrib><creatorcontrib>He, Yingjie</creatorcontrib><creatorcontrib>Lohariwala, Sangeet</creatorcontrib><creatorcontrib>Mysore, Ajay</creatorcontrib><creatorcontrib>Shenoi, Vinayak</creatorcontrib><creatorcontrib>Tan, Mingfeng</creatorcontrib><creatorcontrib>Xiao, Yu</creatorcontrib><title>Large-scale graph analytics in Aster 6: bringing context to big data discovery</title><title>Proceedings of the VLDB Endowment</title><description>Graph analytics is an important big data discovery technique. Applications include identifying influential employees for retention, detecting fraud in a complex interaction network, and determining product affinities by exploiting community buying patterns. Specialized platforms have emerged to satisfy the unique processing requirements of large-scale graph analytics; however, these platforms do not enable graph analytics to be combined with other analytics techniques, nor do they work well with the vast ecosystem of SQL-based business applications. Teradata Aster 6.0 adds support for large-scale graph analytics to its repertoire of analytics capabilities. The solution extends the multi-engine processing architecture with support for bulk synchronous parallel execution, and a specialized graph engine that enables iterative analysis of graph structures. Graph analytics functions written to the vertex-oriented API exposed by the graph engine can be invoked from the context of an SQL query and composed with existing SQL-MR functions, thereby enabling data scientists and business applications to express computations that combine large-scale graph analytics with techniques better suited to a different style of processing. The solution includes a suite of pre-built graph analytic functions adapted for parallel execution.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNzzFPwzAQhmELgURp2Rk9sbnc2Ykdj1UFFCkSC52ti88pQaFUdpb-e6SSgen9pk96hHhAWGPlXPOknTEA1fpSNFdiobEG1YB31__2rbgr5QvANhabhXhsKR-SKpHGJA-ZTp-SjjSepyEWORzlpkwpS7sSNz2NJd3PXYr9y_PHdqfa99e37aZVEb2dlNNkI0Yk9lXPbD1zxbrrnDWOGWpDjWeHnUb0LhkEhp6N6cii9rX3Zing7zfmn1Jy6sMpD9-UzwEhXJxhdobZaX4BQYRDWQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Simmen, David</creator><creator>Schnaitter, Karl</creator><creator>Davis, Jeff</creator><creator>He, Yingjie</creator><creator>Lohariwala, Sangeet</creator><creator>Mysore, Ajay</creator><creator>Shenoi, Vinayak</creator><creator>Tan, Mingfeng</creator><creator>Xiao, Yu</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140801</creationdate><title>Large-scale graph analytics in Aster 6</title><author>Simmen, David ; Schnaitter, Karl ; Davis, Jeff ; He, Yingjie ; Lohariwala, Sangeet ; Mysore, Ajay ; Shenoi, Vinayak ; Tan, Mingfeng ; Xiao, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-72a6c1c1ad94fdd69dd4d2bb7637dd053a89d71b21197e310d0fd33ba61295993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simmen, David</creatorcontrib><creatorcontrib>Schnaitter, Karl</creatorcontrib><creatorcontrib>Davis, Jeff</creatorcontrib><creatorcontrib>He, Yingjie</creatorcontrib><creatorcontrib>Lohariwala, Sangeet</creatorcontrib><creatorcontrib>Mysore, Ajay</creatorcontrib><creatorcontrib>Shenoi, Vinayak</creatorcontrib><creatorcontrib>Tan, Mingfeng</creatorcontrib><creatorcontrib>Xiao, Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simmen, David</au><au>Schnaitter, Karl</au><au>Davis, Jeff</au><au>He, Yingjie</au><au>Lohariwala, Sangeet</au><au>Mysore, Ajay</au><au>Shenoi, Vinayak</au><au>Tan, Mingfeng</au><au>Xiao, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale graph analytics in Aster 6: bringing context to big data discovery</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>7</volume><issue>13</issue><spage>1405</spage><epage>1416</epage><pages>1405-1416</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Graph analytics is an important big data discovery technique. Applications include identifying influential employees for retention, detecting fraud in a complex interaction network, and determining product affinities by exploiting community buying patterns. Specialized platforms have emerged to satisfy the unique processing requirements of large-scale graph analytics; however, these platforms do not enable graph analytics to be combined with other analytics techniques, nor do they work well with the vast ecosystem of SQL-based business applications. Teradata Aster 6.0 adds support for large-scale graph analytics to its repertoire of analytics capabilities. The solution extends the multi-engine processing architecture with support for bulk synchronous parallel execution, and a specialized graph engine that enables iterative analysis of graph structures. Graph analytics functions written to the vertex-oriented API exposed by the graph engine can be invoked from the context of an SQL query and composed with existing SQL-MR functions, thereby enabling data scientists and business applications to express computations that combine large-scale graph analytics with techniques better suited to a different style of processing. The solution includes a suite of pre-built graph analytic functions adapted for parallel execution.</abstract><doi>10.14778/2733004.2733013</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2014-08, Vol.7 (13), p.1405-1416
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_2733004_2733013
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
title Large-scale graph analytics in Aster 6: bringing context to big data discovery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20graph%20analytics%20in%20Aster%206:%20bringing%20context%20to%20big%20data%20discovery&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Simmen,%20David&rft.date=2014-08-01&rft.volume=7&rft.issue=13&rft.spage=1405&rft.epage=1416&rft.pages=1405-1416&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/2733004.2733013&rft_dat=%3Ccrossref%3E10_14778_2733004_2733013%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c196t-72a6c1c1ad94fdd69dd4d2bb7637dd053a89d71b21197e310d0fd33ba61295993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true