Loading…
Distributed edge partitioning for trillion-edge graphs
We propose Distributed Neighbor Expansion (Distributed NE), a parallel and distributed graph partitioning method that can scale to trillion-edge graphs while providing high partitioning quality. Distributed NE is based on a new heuristic, called parallel expansion, where each partition is constructe...
Saved in:
Published in: | Proceedings of the VLDB Endowment 2019-09, Vol.12 (13), p.2379-2392 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c173t-68f2626735cfb907a28e0e2ef12a099a764f82fab308675679742c6a4d8cf6ec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c173t-68f2626735cfb907a28e0e2ef12a099a764f82fab308675679742c6a4d8cf6ec3 |
container_end_page | 2392 |
container_issue | 13 |
container_start_page | 2379 |
container_title | Proceedings of the VLDB Endowment |
container_volume | 12 |
creator | Hanai, Masatoshi Suzumura, Toyotaro Tan, Wen Jun Liu, Elvis Theodoropoulos, Georgios Cai, Wentong |
description | We propose Distributed Neighbor Expansion (Distributed NE), a parallel and distributed graph partitioning method that can scale to trillion-edge graphs while providing high partitioning quality. Distributed NE is based on a new heuristic, called parallel expansion, where each partition is constructed in parallel by greedily expanding its edge set from a single vertex in such a way that the increase of the vertex cuts becomes local minimal. We theoretically prove that the proposed method has the upper bound in the partitioning quality. The empirical evaluation with various graphs shows that the proposed method produces higher-quality partitions than the state-of-the-art distributed graph partitioning algorithms. The performance evaluation shows that the space efficiency of the proposed method is an order-of-magnitude better than the existing algorithms, keeping its time efficiency comparable. As a result, Distributed NE can partition a trillion-edge graph using only 256 machines within 70 minutes. |
doi_str_mv | 10.14778/3358701.3358706 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3358701_3358706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3358701_3358706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c173t-68f2626735cfb907a28e0e2ef12a099a764f82fab308675679742c6a4d8cf6ec3</originalsourceid><addsrcrecordid>eNpNj01LxDAURYMoOI7uXfYPZHxJ2veSpYyfMOBG1yVNkxqp05LEhf_eYaYLV-deDly4jN0K2IiaSN8p1WgCsTkRz9hKiga4BkPn__Ilu8r5CwA1Cr1i-BBzSbH7Kb6vfD_4arapxBKnfdwPVZhSddDjeOj8qIdk5898zS6CHbO_WbhmH0-P79sXvnt7ft3e77gTpApHHSRKJNW40BkgK7UHL30Q0oIxlrAOWgbbKdBIDZKhWjq0da9dQO_UmsFp16Up5-RDO6f4bdNvK6A9_m6X3wtR_QFlfUp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distributed edge partitioning for trillion-edge graphs</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Hanai, Masatoshi ; Suzumura, Toyotaro ; Tan, Wen Jun ; Liu, Elvis ; Theodoropoulos, Georgios ; Cai, Wentong</creator><creatorcontrib>Hanai, Masatoshi ; Suzumura, Toyotaro ; Tan, Wen Jun ; Liu, Elvis ; Theodoropoulos, Georgios ; Cai, Wentong</creatorcontrib><description>We propose Distributed Neighbor Expansion (Distributed NE), a parallel and distributed graph partitioning method that can scale to trillion-edge graphs while providing high partitioning quality. Distributed NE is based on a new heuristic, called parallel expansion, where each partition is constructed in parallel by greedily expanding its edge set from a single vertex in such a way that the increase of the vertex cuts becomes local minimal. We theoretically prove that the proposed method has the upper bound in the partitioning quality. The empirical evaluation with various graphs shows that the proposed method produces higher-quality partitions than the state-of-the-art distributed graph partitioning algorithms. The performance evaluation shows that the space efficiency of the proposed method is an order-of-magnitude better than the existing algorithms, keeping its time efficiency comparable. As a result, Distributed NE can partition a trillion-edge graph using only 256 machines within 70 minutes.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3358701.3358706</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2019-09, Vol.12 (13), p.2379-2392</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c173t-68f2626735cfb907a28e0e2ef12a099a764f82fab308675679742c6a4d8cf6ec3</citedby><cites>FETCH-LOGICAL-c173t-68f2626735cfb907a28e0e2ef12a099a764f82fab308675679742c6a4d8cf6ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Hanai, Masatoshi</creatorcontrib><creatorcontrib>Suzumura, Toyotaro</creatorcontrib><creatorcontrib>Tan, Wen Jun</creatorcontrib><creatorcontrib>Liu, Elvis</creatorcontrib><creatorcontrib>Theodoropoulos, Georgios</creatorcontrib><creatorcontrib>Cai, Wentong</creatorcontrib><title>Distributed edge partitioning for trillion-edge graphs</title><title>Proceedings of the VLDB Endowment</title><description>We propose Distributed Neighbor Expansion (Distributed NE), a parallel and distributed graph partitioning method that can scale to trillion-edge graphs while providing high partitioning quality. Distributed NE is based on a new heuristic, called parallel expansion, where each partition is constructed in parallel by greedily expanding its edge set from a single vertex in such a way that the increase of the vertex cuts becomes local minimal. We theoretically prove that the proposed method has the upper bound in the partitioning quality. The empirical evaluation with various graphs shows that the proposed method produces higher-quality partitions than the state-of-the-art distributed graph partitioning algorithms. The performance evaluation shows that the space efficiency of the proposed method is an order-of-magnitude better than the existing algorithms, keeping its time efficiency comparable. As a result, Distributed NE can partition a trillion-edge graph using only 256 machines within 70 minutes.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNj01LxDAURYMoOI7uXfYPZHxJ2veSpYyfMOBG1yVNkxqp05LEhf_eYaYLV-deDly4jN0K2IiaSN8p1WgCsTkRz9hKiga4BkPn__Ilu8r5CwA1Cr1i-BBzSbH7Kb6vfD_4arapxBKnfdwPVZhSddDjeOj8qIdk5898zS6CHbO_WbhmH0-P79sXvnt7ft3e77gTpApHHSRKJNW40BkgK7UHL30Q0oIxlrAOWgbbKdBIDZKhWjq0da9dQO_UmsFp16Up5-RDO6f4bdNvK6A9_m6X3wtR_QFlfUp0</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Hanai, Masatoshi</creator><creator>Suzumura, Toyotaro</creator><creator>Tan, Wen Jun</creator><creator>Liu, Elvis</creator><creator>Theodoropoulos, Georgios</creator><creator>Cai, Wentong</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201909</creationdate><title>Distributed edge partitioning for trillion-edge graphs</title><author>Hanai, Masatoshi ; Suzumura, Toyotaro ; Tan, Wen Jun ; Liu, Elvis ; Theodoropoulos, Georgios ; Cai, Wentong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c173t-68f2626735cfb907a28e0e2ef12a099a764f82fab308675679742c6a4d8cf6ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanai, Masatoshi</creatorcontrib><creatorcontrib>Suzumura, Toyotaro</creatorcontrib><creatorcontrib>Tan, Wen Jun</creatorcontrib><creatorcontrib>Liu, Elvis</creatorcontrib><creatorcontrib>Theodoropoulos, Georgios</creatorcontrib><creatorcontrib>Cai, Wentong</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanai, Masatoshi</au><au>Suzumura, Toyotaro</au><au>Tan, Wen Jun</au><au>Liu, Elvis</au><au>Theodoropoulos, Georgios</au><au>Cai, Wentong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed edge partitioning for trillion-edge graphs</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2019-09</date><risdate>2019</risdate><volume>12</volume><issue>13</issue><spage>2379</spage><epage>2392</epage><pages>2379-2392</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>We propose Distributed Neighbor Expansion (Distributed NE), a parallel and distributed graph partitioning method that can scale to trillion-edge graphs while providing high partitioning quality. Distributed NE is based on a new heuristic, called parallel expansion, where each partition is constructed in parallel by greedily expanding its edge set from a single vertex in such a way that the increase of the vertex cuts becomes local minimal. We theoretically prove that the proposed method has the upper bound in the partitioning quality. The empirical evaluation with various graphs shows that the proposed method produces higher-quality partitions than the state-of-the-art distributed graph partitioning algorithms. The performance evaluation shows that the space efficiency of the proposed method is an order-of-magnitude better than the existing algorithms, keeping its time efficiency comparable. As a result, Distributed NE can partition a trillion-edge graph using only 256 machines within 70 minutes.</abstract><doi>10.14778/3358701.3358706</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2150-8097 |
ispartof | Proceedings of the VLDB Endowment, 2019-09, Vol.12 (13), p.2379-2392 |
issn | 2150-8097 2150-8097 |
language | eng |
recordid | cdi_crossref_primary_10_14778_3358701_3358706 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
title | Distributed edge partitioning for trillion-edge graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20edge%20partitioning%20for%20trillion-edge%20graphs&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Hanai,%20Masatoshi&rft.date=2019-09&rft.volume=12&rft.issue=13&rft.spage=2379&rft.epage=2392&rft.pages=2379-2392&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3358701.3358706&rft_dat=%3Ccrossref%3E10_14778_3358701_3358706%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c173t-68f2626735cfb907a28e0e2ef12a099a764f82fab308675679742c6a4d8cf6ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |