Loading…
Deep unsupervised cardinality estimation
Cardinality estimation has long been grounded in statistical tools for density estimation. To capture the rich multivariate distributions of relational tables, we propose the use of a new type of high-capacity statistical model: deep autoregressive models. However, direct application of these models...
Saved in:
Published in: | Proceedings of the VLDB Endowment 2019-11, Vol.13 (3), p.279-292 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c243t-9b8fe2041ce8e7766ec6eb1d8edc6852ff92d543a5a15032223b0e0487d782873 |
---|---|
cites | cdi_FETCH-LOGICAL-c243t-9b8fe2041ce8e7766ec6eb1d8edc6852ff92d543a5a15032223b0e0487d782873 |
container_end_page | 292 |
container_issue | 3 |
container_start_page | 279 |
container_title | Proceedings of the VLDB Endowment |
container_volume | 13 |
creator | Yang, Zongheng Liang, Eric Kamsetty, Amog Wu, Chenggang Duan, Yan Chen, Xi Abbeel, Pieter Hellerstein, Joseph M. Krishnan, Sanjay Stoica, Ion |
description | Cardinality estimation has long been grounded in statistical tools for density estimation. To capture the rich multivariate distributions of relational tables, we propose the use of a new type of high-capacity statistical model: deep autoregressive models. However, direct application of these models leads to a limited estimator that is prohibitively expensive to evaluate for range or wildcard predicates. To produce a truly usable estimator, we develop a Monte Carlo integration scheme on top of autoregressive models that can efficiently handle range queries with dozens of dimensions or more.
Like classical synopses, our estimator summarizes the data without supervision. Unlike previous solutions, we approximate the joint data distribution without any independence assumptions. Evaluated on real-world datasets and compared against real systems and dominant families of techniques, our estimator achieves single-digit multiplicative error at tail, an up to 90x accuracy improvement over the second best method, and is space- and runtime-efficient. |
doi_str_mv | 10.14778/3368289.3368294 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3368289_3368294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3368289_3368294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-9b8fe2041ce8e7766ec6eb1d8edc6852ff92d543a5a15032223b0e0487d782873</originalsourceid><addsrcrecordid>eNpNjztPwzAURi0EEqVlZ8zIknL9iH09ovKUKrHQOXLsa8mopJGdIvXfE5UMTOebPp3D2B2HNVfG4IOUGgXa9ZlWXbCF4A3UCNZc_tvX7KaULwCNmuOC3T8RDdWxL8eB8k8qFCrvcki926fxVFEZ07cb06Ffsavo9oVuZy7Z7uX5c_NWbz9e3zeP29oLJcfadhhJgOKekIzRmrymjgek4DU2IkYrQqOka9xkJIUQsgMChSaYSd_IJYO_X58PpWSK7ZAnhXxqObTn0nYubedS-QvsHkWG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep unsupervised cardinality estimation</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Yang, Zongheng ; Liang, Eric ; Kamsetty, Amog ; Wu, Chenggang ; Duan, Yan ; Chen, Xi ; Abbeel, Pieter ; Hellerstein, Joseph M. ; Krishnan, Sanjay ; Stoica, Ion</creator><creatorcontrib>Yang, Zongheng ; Liang, Eric ; Kamsetty, Amog ; Wu, Chenggang ; Duan, Yan ; Chen, Xi ; Abbeel, Pieter ; Hellerstein, Joseph M. ; Krishnan, Sanjay ; Stoica, Ion</creatorcontrib><description>Cardinality estimation has long been grounded in statistical tools for density estimation. To capture the rich multivariate distributions of relational tables, we propose the use of a new type of high-capacity statistical model: deep autoregressive models. However, direct application of these models leads to a limited estimator that is prohibitively expensive to evaluate for range or wildcard predicates. To produce a truly usable estimator, we develop a Monte Carlo integration scheme on top of autoregressive models that can efficiently handle range queries with dozens of dimensions or more.
Like classical synopses, our estimator summarizes the data without supervision. Unlike previous solutions, we approximate the joint data distribution without any independence assumptions. Evaluated on real-world datasets and compared against real systems and dominant families of techniques, our estimator achieves single-digit multiplicative error at tail, an up to 90x accuracy improvement over the second best method, and is space- and runtime-efficient.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3368289.3368294</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2019-11, Vol.13 (3), p.279-292</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-9b8fe2041ce8e7766ec6eb1d8edc6852ff92d543a5a15032223b0e0487d782873</citedby><cites>FETCH-LOGICAL-c243t-9b8fe2041ce8e7766ec6eb1d8edc6852ff92d543a5a15032223b0e0487d782873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Yang, Zongheng</creatorcontrib><creatorcontrib>Liang, Eric</creatorcontrib><creatorcontrib>Kamsetty, Amog</creatorcontrib><creatorcontrib>Wu, Chenggang</creatorcontrib><creatorcontrib>Duan, Yan</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Abbeel, Pieter</creatorcontrib><creatorcontrib>Hellerstein, Joseph M.</creatorcontrib><creatorcontrib>Krishnan, Sanjay</creatorcontrib><creatorcontrib>Stoica, Ion</creatorcontrib><title>Deep unsupervised cardinality estimation</title><title>Proceedings of the VLDB Endowment</title><description>Cardinality estimation has long been grounded in statistical tools for density estimation. To capture the rich multivariate distributions of relational tables, we propose the use of a new type of high-capacity statistical model: deep autoregressive models. However, direct application of these models leads to a limited estimator that is prohibitively expensive to evaluate for range or wildcard predicates. To produce a truly usable estimator, we develop a Monte Carlo integration scheme on top of autoregressive models that can efficiently handle range queries with dozens of dimensions or more.
Like classical synopses, our estimator summarizes the data without supervision. Unlike previous solutions, we approximate the joint data distribution without any independence assumptions. Evaluated on real-world datasets and compared against real systems and dominant families of techniques, our estimator achieves single-digit multiplicative error at tail, an up to 90x accuracy improvement over the second best method, and is space- and runtime-efficient.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNjztPwzAURi0EEqVlZ8zIknL9iH09ovKUKrHQOXLsa8mopJGdIvXfE5UMTOebPp3D2B2HNVfG4IOUGgXa9ZlWXbCF4A3UCNZc_tvX7KaULwCNmuOC3T8RDdWxL8eB8k8qFCrvcki926fxVFEZ07cb06Ffsavo9oVuZy7Z7uX5c_NWbz9e3zeP29oLJcfadhhJgOKekIzRmrymjgek4DU2IkYrQqOka9xkJIUQsgMChSaYSd_IJYO_X58PpWSK7ZAnhXxqObTn0nYubedS-QvsHkWG</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Yang, Zongheng</creator><creator>Liang, Eric</creator><creator>Kamsetty, Amog</creator><creator>Wu, Chenggang</creator><creator>Duan, Yan</creator><creator>Chen, Xi</creator><creator>Abbeel, Pieter</creator><creator>Hellerstein, Joseph M.</creator><creator>Krishnan, Sanjay</creator><creator>Stoica, Ion</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Deep unsupervised cardinality estimation</title><author>Yang, Zongheng ; Liang, Eric ; Kamsetty, Amog ; Wu, Chenggang ; Duan, Yan ; Chen, Xi ; Abbeel, Pieter ; Hellerstein, Joseph M. ; Krishnan, Sanjay ; Stoica, Ion</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-9b8fe2041ce8e7766ec6eb1d8edc6852ff92d543a5a15032223b0e0487d782873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zongheng</creatorcontrib><creatorcontrib>Liang, Eric</creatorcontrib><creatorcontrib>Kamsetty, Amog</creatorcontrib><creatorcontrib>Wu, Chenggang</creatorcontrib><creatorcontrib>Duan, Yan</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Abbeel, Pieter</creatorcontrib><creatorcontrib>Hellerstein, Joseph M.</creatorcontrib><creatorcontrib>Krishnan, Sanjay</creatorcontrib><creatorcontrib>Stoica, Ion</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zongheng</au><au>Liang, Eric</au><au>Kamsetty, Amog</au><au>Wu, Chenggang</au><au>Duan, Yan</au><au>Chen, Xi</au><au>Abbeel, Pieter</au><au>Hellerstein, Joseph M.</au><au>Krishnan, Sanjay</au><au>Stoica, Ion</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep unsupervised cardinality estimation</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>13</volume><issue>3</issue><spage>279</spage><epage>292</epage><pages>279-292</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Cardinality estimation has long been grounded in statistical tools for density estimation. To capture the rich multivariate distributions of relational tables, we propose the use of a new type of high-capacity statistical model: deep autoregressive models. However, direct application of these models leads to a limited estimator that is prohibitively expensive to evaluate for range or wildcard predicates. To produce a truly usable estimator, we develop a Monte Carlo integration scheme on top of autoregressive models that can efficiently handle range queries with dozens of dimensions or more.
Like classical synopses, our estimator summarizes the data without supervision. Unlike previous solutions, we approximate the joint data distribution without any independence assumptions. Evaluated on real-world datasets and compared against real systems and dominant families of techniques, our estimator achieves single-digit multiplicative error at tail, an up to 90x accuracy improvement over the second best method, and is space- and runtime-efficient.</abstract><doi>10.14778/3368289.3368294</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2150-8097 |
ispartof | Proceedings of the VLDB Endowment, 2019-11, Vol.13 (3), p.279-292 |
issn | 2150-8097 2150-8097 |
language | eng |
recordid | cdi_crossref_primary_10_14778_3368289_3368294 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
title | Deep unsupervised cardinality estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A41%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20unsupervised%20cardinality%20estimation&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Yang,%20Zongheng&rft.date=2019-11-01&rft.volume=13&rft.issue=3&rft.spage=279&rft.epage=292&rft.pages=279-292&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3368289.3368294&rft_dat=%3Ccrossref%3E10_14778_3368289_3368294%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c243t-9b8fe2041ce8e7766ec6eb1d8edc6852ff92d543a5a15032223b0e0487d782873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |