Loading…

Database processing-in-memory: an experimental study

The rapid growth of "big-data" intensified the problem of data movement when processing data analytics: Large amounts of data need to move through the memory up to the CPU before any computation takes place. To tackle this costly problem, Processing-in-Memory (PIM) inverts the traditional...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the VLDB Endowment 2019-11, Vol.13 (3), p.334-347
Main Authors: Kepe, Tiago R., de Almeida, Eduardo C., Alves, Marco A. Z.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c196t-4c94a85119c65772d2c59cd1e7d1abb67b248d33d133e54095d4029493f976f3
container_end_page 347
container_issue 3
container_start_page 334
container_title Proceedings of the VLDB Endowment
container_volume 13
creator Kepe, Tiago R.
de Almeida, Eduardo C.
Alves, Marco A. Z.
description The rapid growth of "big-data" intensified the problem of data movement when processing data analytics: Large amounts of data need to move through the memory up to the CPU before any computation takes place. To tackle this costly problem, Processing-in-Memory (PIM) inverts the traditional data processing by pushing computation to memory with an impact on performance and energy efficiency. In this paper, we present an experimental study on processing database SIMD operators in PIM compared to current x86 processor (i.e., using AVX512 instructions). We discuss the execution time gap between those architectures. However, this is the first experimental study, in the database community, to discuss the trade-offs of execution time and energy consumption between PIM and x86 in the main query execution systems: materialized, vectorized, and pipelined. We also discuss the results of a hybrid query scheduling when interleaving the execution of the SIMD operators between PIM and x86 processing hardware. In our results, the hybrid query plan reduced the execution time by 45%. It also drastically reduced energy consumption by more than 2x compared to hardware-specific query plans.
doi_str_mv 10.14778/3368289.3368298
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3368289_3368298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3368289_3368298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-4c94a85119c65772d2c59cd1e7d1abb67b248d33d133e54095d4029493f976f3</originalsourceid><addsrcrecordid>eNpNz01LAzEUheEgCtbq3o3gH0jNzc3HvUupWoWCm-5DJsnIiNMpSTf990Kdhav3rA48QtyDWoHxnp4QHWni1blMF2KhwSpJiv3lv30tblr7VsqRA1qIh5d4jF1s5fFQp1RaG_ZfctjLsYxTPd2Kqz7-tHI3dyl2b6-79bvcfm4-1s9bmYDdUZrEJpIF4OSs9zrrZDllKD5D7DrnO20oI2ZALNYottkozYaxZ-96XAr1d5vq1FotfTjUYYz1FECFsy7MujDr8BeFikAn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Database processing-in-memory: an experimental study</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Kepe, Tiago R. ; de Almeida, Eduardo C. ; Alves, Marco A. Z.</creator><creatorcontrib>Kepe, Tiago R. ; de Almeida, Eduardo C. ; Alves, Marco A. Z.</creatorcontrib><description>The rapid growth of "big-data" intensified the problem of data movement when processing data analytics: Large amounts of data need to move through the memory up to the CPU before any computation takes place. To tackle this costly problem, Processing-in-Memory (PIM) inverts the traditional data processing by pushing computation to memory with an impact on performance and energy efficiency. In this paper, we present an experimental study on processing database SIMD operators in PIM compared to current x86 processor (i.e., using AVX512 instructions). We discuss the execution time gap between those architectures. However, this is the first experimental study, in the database community, to discuss the trade-offs of execution time and energy consumption between PIM and x86 in the main query execution systems: materialized, vectorized, and pipelined. We also discuss the results of a hybrid query scheduling when interleaving the execution of the SIMD operators between PIM and x86 processing hardware. In our results, the hybrid query plan reduced the execution time by 45%. It also drastically reduced energy consumption by more than 2x compared to hardware-specific query plans.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3368289.3368298</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2019-11, Vol.13 (3), p.334-347</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-4c94a85119c65772d2c59cd1e7d1abb67b248d33d133e54095d4029493f976f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kepe, Tiago R.</creatorcontrib><creatorcontrib>de Almeida, Eduardo C.</creatorcontrib><creatorcontrib>Alves, Marco A. Z.</creatorcontrib><title>Database processing-in-memory: an experimental study</title><title>Proceedings of the VLDB Endowment</title><description>The rapid growth of "big-data" intensified the problem of data movement when processing data analytics: Large amounts of data need to move through the memory up to the CPU before any computation takes place. To tackle this costly problem, Processing-in-Memory (PIM) inverts the traditional data processing by pushing computation to memory with an impact on performance and energy efficiency. In this paper, we present an experimental study on processing database SIMD operators in PIM compared to current x86 processor (i.e., using AVX512 instructions). We discuss the execution time gap between those architectures. However, this is the first experimental study, in the database community, to discuss the trade-offs of execution time and energy consumption between PIM and x86 in the main query execution systems: materialized, vectorized, and pipelined. We also discuss the results of a hybrid query scheduling when interleaving the execution of the SIMD operators between PIM and x86 processing hardware. In our results, the hybrid query plan reduced the execution time by 45%. It also drastically reduced energy consumption by more than 2x compared to hardware-specific query plans.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNz01LAzEUheEgCtbq3o3gH0jNzc3HvUupWoWCm-5DJsnIiNMpSTf990Kdhav3rA48QtyDWoHxnp4QHWni1blMF2KhwSpJiv3lv30tblr7VsqRA1qIh5d4jF1s5fFQp1RaG_ZfctjLsYxTPd2Kqz7-tHI3dyl2b6-79bvcfm4-1s9bmYDdUZrEJpIF4OSs9zrrZDllKD5D7DrnO20oI2ZALNYottkozYaxZ-96XAr1d5vq1FotfTjUYYz1FECFsy7MujDr8BeFikAn</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Kepe, Tiago R.</creator><creator>de Almeida, Eduardo C.</creator><creator>Alves, Marco A. Z.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Database processing-in-memory</title><author>Kepe, Tiago R. ; de Almeida, Eduardo C. ; Alves, Marco A. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-4c94a85119c65772d2c59cd1e7d1abb67b248d33d133e54095d4029493f976f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kepe, Tiago R.</creatorcontrib><creatorcontrib>de Almeida, Eduardo C.</creatorcontrib><creatorcontrib>Alves, Marco A. Z.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kepe, Tiago R.</au><au>de Almeida, Eduardo C.</au><au>Alves, Marco A. Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Database processing-in-memory: an experimental study</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>13</volume><issue>3</issue><spage>334</spage><epage>347</epage><pages>334-347</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>The rapid growth of "big-data" intensified the problem of data movement when processing data analytics: Large amounts of data need to move through the memory up to the CPU before any computation takes place. To tackle this costly problem, Processing-in-Memory (PIM) inverts the traditional data processing by pushing computation to memory with an impact on performance and energy efficiency. In this paper, we present an experimental study on processing database SIMD operators in PIM compared to current x86 processor (i.e., using AVX512 instructions). We discuss the execution time gap between those architectures. However, this is the first experimental study, in the database community, to discuss the trade-offs of execution time and energy consumption between PIM and x86 in the main query execution systems: materialized, vectorized, and pipelined. We also discuss the results of a hybrid query scheduling when interleaving the execution of the SIMD operators between PIM and x86 processing hardware. In our results, the hybrid query plan reduced the execution time by 45%. It also drastically reduced energy consumption by more than 2x compared to hardware-specific query plans.</abstract><doi>10.14778/3368289.3368298</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2019-11, Vol.13 (3), p.334-347
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_3368289_3368298
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
title Database processing-in-memory: an experimental study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Database%20processing-in-memory:%20an%20experimental%20study&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Kepe,%20Tiago%20R.&rft.date=2019-11-01&rft.volume=13&rft.issue=3&rft.spage=334&rft.epage=347&rft.pages=334-347&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3368289.3368298&rft_dat=%3Ccrossref%3E10_14778_3368289_3368298%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c196t-4c94a85119c65772d2c59cd1e7d1abb67b248d33d133e54095d4029493f976f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true