Loading…
RecBench: benchmarks for evaluating performance of recommender system architectures
Traditionally, recommender systems have been "hand-built", implemented as custom applications hard-wired to a particular recommendation task. Recently, the database community has begun exploring alternative DBMS-based recommender system architectures, whereby a database both stores the rec...
Saved in:
Published in: | Proceedings of the VLDB Endowment 2011-08, Vol.4 (11), p.911-920 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c196t-a69bb74d3280c58551a9bf6bb863c42741bf3d0015632576e26ee89579d0ff933 |
container_end_page | 920 |
container_issue | 11 |
container_start_page | 911 |
container_title | Proceedings of the VLDB Endowment |
container_volume | 4 |
creator | Levandoski, Justin J. Ekstrand, Michael D. Ludwig, Michael J. Eldawy, Ahmed Mokbel, Mohamed F. Riedl, John T. |
description | Traditionally, recommender systems have been "hand-built", implemented as custom applications hard-wired to a particular recommendation task. Recently, the database community has begun exploring alternative DBMS-based recommender system architectures, whereby a database both
stores
the recommender system data (e.g., ratings data and the derived recommender models) and
generates
recommendations using SQL queries. In this paper, we present a comprehensive experimental comparison of both architectures. We define a set of benchmark tasks based on the needs of a typical recommender-powered e-commerce site. We then evaluate the performance of the "hand-built" MultiLens recommender application against two DBMS-based implementations: an unmodified DBMS and
RecStore
, a DBMS modified to improve efficiency in incremental recommender model updates. We employ two non-trivial data sets in our study: the 10 million rating MovieLens data, and the 100 million rating data set used in the Netflix Challenge. This study is the first of its kind, and our findings reveal an interesting trade-off: "hand-built" recommenders exhibit superior performance in model-building and pure recommendation tasks, while DBMS-based recommenders are superior at more complex recommendation tasks such as providing filtered recommendations and blending text-search with recommendation prediction scores. |
doi_str_mv | 10.14778/3402707.3402729 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3402707_3402729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3402707_3402729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-a69bb74d3280c58551a9bf6bb863c42741bf3d0015632576e26ee89579d0ff933</originalsourceid><addsrcrecordid>eNpNz01rAjEUheEgFZyqe__E6L35uDdZ6mA_QCiUug6TTEIrtsrEjf9esLNw9Z7VgUeIBcISNbNdKQ2SgZf3SjcSlUQDtQXHTw97Ip5LOQCQJbSVmHymuEl_8Xsmxrk9ljQfOhX7l-1X81bvPl7fm_WujujoUrfkQmDdKWkhGmsMti5kCsGSilqyxpBVB4CGlDRMSVJK1hl2HeTslJoK-P-N_amUPmV_7n9-2_7qEfxd4geJHyTqBhxLN_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RecBench: benchmarks for evaluating performance of recommender system architectures</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Levandoski, Justin J. ; Ekstrand, Michael D. ; Ludwig, Michael J. ; Eldawy, Ahmed ; Mokbel, Mohamed F. ; Riedl, John T.</creator><creatorcontrib>Levandoski, Justin J. ; Ekstrand, Michael D. ; Ludwig, Michael J. ; Eldawy, Ahmed ; Mokbel, Mohamed F. ; Riedl, John T.</creatorcontrib><description>Traditionally, recommender systems have been "hand-built", implemented as custom applications hard-wired to a particular recommendation task. Recently, the database community has begun exploring alternative DBMS-based recommender system architectures, whereby a database both
stores
the recommender system data (e.g., ratings data and the derived recommender models) and
generates
recommendations using SQL queries. In this paper, we present a comprehensive experimental comparison of both architectures. We define a set of benchmark tasks based on the needs of a typical recommender-powered e-commerce site. We then evaluate the performance of the "hand-built" MultiLens recommender application against two DBMS-based implementations: an unmodified DBMS and
RecStore
, a DBMS modified to improve efficiency in incremental recommender model updates. We employ two non-trivial data sets in our study: the 10 million rating MovieLens data, and the 100 million rating data set used in the Netflix Challenge. This study is the first of its kind, and our findings reveal an interesting trade-off: "hand-built" recommenders exhibit superior performance in model-building and pure recommendation tasks, while DBMS-based recommenders are superior at more complex recommendation tasks such as providing filtered recommendations and blending text-search with recommendation prediction scores.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3402707.3402729</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2011-08, Vol.4 (11), p.911-920</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-a69bb74d3280c58551a9bf6bb863c42741bf3d0015632576e26ee89579d0ff933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Levandoski, Justin J.</creatorcontrib><creatorcontrib>Ekstrand, Michael D.</creatorcontrib><creatorcontrib>Ludwig, Michael J.</creatorcontrib><creatorcontrib>Eldawy, Ahmed</creatorcontrib><creatorcontrib>Mokbel, Mohamed F.</creatorcontrib><creatorcontrib>Riedl, John T.</creatorcontrib><title>RecBench: benchmarks for evaluating performance of recommender system architectures</title><title>Proceedings of the VLDB Endowment</title><description>Traditionally, recommender systems have been "hand-built", implemented as custom applications hard-wired to a particular recommendation task. Recently, the database community has begun exploring alternative DBMS-based recommender system architectures, whereby a database both
stores
the recommender system data (e.g., ratings data and the derived recommender models) and
generates
recommendations using SQL queries. In this paper, we present a comprehensive experimental comparison of both architectures. We define a set of benchmark tasks based on the needs of a typical recommender-powered e-commerce site. We then evaluate the performance of the "hand-built" MultiLens recommender application against two DBMS-based implementations: an unmodified DBMS and
RecStore
, a DBMS modified to improve efficiency in incremental recommender model updates. We employ two non-trivial data sets in our study: the 10 million rating MovieLens data, and the 100 million rating data set used in the Netflix Challenge. This study is the first of its kind, and our findings reveal an interesting trade-off: "hand-built" recommenders exhibit superior performance in model-building and pure recommendation tasks, while DBMS-based recommenders are superior at more complex recommendation tasks such as providing filtered recommendations and blending text-search with recommendation prediction scores.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpNz01rAjEUheEgFZyqe__E6L35uDdZ6mA_QCiUug6TTEIrtsrEjf9esLNw9Z7VgUeIBcISNbNdKQ2SgZf3SjcSlUQDtQXHTw97Ip5LOQCQJbSVmHymuEl_8Xsmxrk9ljQfOhX7l-1X81bvPl7fm_WujujoUrfkQmDdKWkhGmsMti5kCsGSilqyxpBVB4CGlDRMSVJK1hl2HeTslJoK-P-N_amUPmV_7n9-2_7qEfxd4geJHyTqBhxLN_4</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Levandoski, Justin J.</creator><creator>Ekstrand, Michael D.</creator><creator>Ludwig, Michael J.</creator><creator>Eldawy, Ahmed</creator><creator>Mokbel, Mohamed F.</creator><creator>Riedl, John T.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110801</creationdate><title>RecBench</title><author>Levandoski, Justin J. ; Ekstrand, Michael D. ; Ludwig, Michael J. ; Eldawy, Ahmed ; Mokbel, Mohamed F. ; Riedl, John T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-a69bb74d3280c58551a9bf6bb863c42741bf3d0015632576e26ee89579d0ff933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levandoski, Justin J.</creatorcontrib><creatorcontrib>Ekstrand, Michael D.</creatorcontrib><creatorcontrib>Ludwig, Michael J.</creatorcontrib><creatorcontrib>Eldawy, Ahmed</creatorcontrib><creatorcontrib>Mokbel, Mohamed F.</creatorcontrib><creatorcontrib>Riedl, John T.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levandoski, Justin J.</au><au>Ekstrand, Michael D.</au><au>Ludwig, Michael J.</au><au>Eldawy, Ahmed</au><au>Mokbel, Mohamed F.</au><au>Riedl, John T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RecBench: benchmarks for evaluating performance of recommender system architectures</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>4</volume><issue>11</issue><spage>911</spage><epage>920</epage><pages>911-920</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Traditionally, recommender systems have been "hand-built", implemented as custom applications hard-wired to a particular recommendation task. Recently, the database community has begun exploring alternative DBMS-based recommender system architectures, whereby a database both
stores
the recommender system data (e.g., ratings data and the derived recommender models) and
generates
recommendations using SQL queries. In this paper, we present a comprehensive experimental comparison of both architectures. We define a set of benchmark tasks based on the needs of a typical recommender-powered e-commerce site. We then evaluate the performance of the "hand-built" MultiLens recommender application against two DBMS-based implementations: an unmodified DBMS and
RecStore
, a DBMS modified to improve efficiency in incremental recommender model updates. We employ two non-trivial data sets in our study: the 10 million rating MovieLens data, and the 100 million rating data set used in the Netflix Challenge. This study is the first of its kind, and our findings reveal an interesting trade-off: "hand-built" recommenders exhibit superior performance in model-building and pure recommendation tasks, while DBMS-based recommenders are superior at more complex recommendation tasks such as providing filtered recommendations and blending text-search with recommendation prediction scores.</abstract><doi>10.14778/3402707.3402729</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2150-8097 |
ispartof | Proceedings of the VLDB Endowment, 2011-08, Vol.4 (11), p.911-920 |
issn | 2150-8097 2150-8097 |
language | eng |
recordid | cdi_crossref_primary_10_14778_3402707_3402729 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
title | RecBench: benchmarks for evaluating performance of recommender system architectures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RecBench:%20benchmarks%20for%20evaluating%20performance%20of%20recommender%20system%20architectures&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Levandoski,%20Justin%20J.&rft.date=2011-08-01&rft.volume=4&rft.issue=11&rft.spage=911&rft.epage=920&rft.pages=911-920&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3402707.3402729&rft_dat=%3Ccrossref%3E10_14778_3402707_3402729%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c196t-a69bb74d3280c58551a9bf6bb863c42741bf3d0015632576e26ee89579d0ff933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |