Loading…

RecBench: benchmarks for evaluating performance of recommender system architectures

Traditionally, recommender systems have been "hand-built", implemented as custom applications hard-wired to a particular recommendation task. Recently, the database community has begun exploring alternative DBMS-based recommender system architectures, whereby a database both stores the rec...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the VLDB Endowment 2011-08, Vol.4 (11), p.911-920
Main Authors: Levandoski, Justin J., Ekstrand, Michael D., Ludwig, Michael J., Eldawy, Ahmed, Mokbel, Mohamed F., Riedl, John T.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c196t-a69bb74d3280c58551a9bf6bb863c42741bf3d0015632576e26ee89579d0ff933
container_end_page 920
container_issue 11
container_start_page 911
container_title Proceedings of the VLDB Endowment
container_volume 4
creator Levandoski, Justin J.
Ekstrand, Michael D.
Ludwig, Michael J.
Eldawy, Ahmed
Mokbel, Mohamed F.
Riedl, John T.
description Traditionally, recommender systems have been "hand-built", implemented as custom applications hard-wired to a particular recommendation task. Recently, the database community has begun exploring alternative DBMS-based recommender system architectures, whereby a database both stores the recommender system data (e.g., ratings data and the derived recommender models) and generates recommendations using SQL queries. In this paper, we present a comprehensive experimental comparison of both architectures. We define a set of benchmark tasks based on the needs of a typical recommender-powered e-commerce site. We then evaluate the performance of the "hand-built" MultiLens recommender application against two DBMS-based implementations: an unmodified DBMS and RecStore , a DBMS modified to improve efficiency in incremental recommender model updates. We employ two non-trivial data sets in our study: the 10 million rating MovieLens data, and the 100 million rating data set used in the Netflix Challenge. This study is the first of its kind, and our findings reveal an interesting trade-off: "hand-built" recommenders exhibit superior performance in model-building and pure recommendation tasks, while DBMS-based recommenders are superior at more complex recommendation tasks such as providing filtered recommendations and blending text-search with recommendation prediction scores.
doi_str_mv 10.14778/3402707.3402729
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3402707_3402729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3402707_3402729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-a69bb74d3280c58551a9bf6bb863c42741bf3d0015632576e26ee89579d0ff933</originalsourceid><addsrcrecordid>eNpNz01rAjEUheEgFZyqe__E6L35uDdZ6mA_QCiUug6TTEIrtsrEjf9esLNw9Z7VgUeIBcISNbNdKQ2SgZf3SjcSlUQDtQXHTw97Ip5LOQCQJbSVmHymuEl_8Xsmxrk9ljQfOhX7l-1X81bvPl7fm_WujujoUrfkQmDdKWkhGmsMti5kCsGSilqyxpBVB4CGlDRMSVJK1hl2HeTslJoK-P-N_amUPmV_7n9-2_7qEfxd4geJHyTqBhxLN_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RecBench: benchmarks for evaluating performance of recommender system architectures</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Levandoski, Justin J. ; Ekstrand, Michael D. ; Ludwig, Michael J. ; Eldawy, Ahmed ; Mokbel, Mohamed F. ; Riedl, John T.</creator><creatorcontrib>Levandoski, Justin J. ; Ekstrand, Michael D. ; Ludwig, Michael J. ; Eldawy, Ahmed ; Mokbel, Mohamed F. ; Riedl, John T.</creatorcontrib><description>Traditionally, recommender systems have been "hand-built", implemented as custom applications hard-wired to a particular recommendation task. Recently, the database community has begun exploring alternative DBMS-based recommender system architectures, whereby a database both stores the recommender system data (e.g., ratings data and the derived recommender models) and generates recommendations using SQL queries. In this paper, we present a comprehensive experimental comparison of both architectures. We define a set of benchmark tasks based on the needs of a typical recommender-powered e-commerce site. We then evaluate the performance of the "hand-built" MultiLens recommender application against two DBMS-based implementations: an unmodified DBMS and RecStore , a DBMS modified to improve efficiency in incremental recommender model updates. We employ two non-trivial data sets in our study: the 10 million rating MovieLens data, and the 100 million rating data set used in the Netflix Challenge. This study is the first of its kind, and our findings reveal an interesting trade-off: "hand-built" recommenders exhibit superior performance in model-building and pure recommendation tasks, while DBMS-based recommenders are superior at more complex recommendation tasks such as providing filtered recommendations and blending text-search with recommendation prediction scores.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3402707.3402729</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2011-08, Vol.4 (11), p.911-920</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-a69bb74d3280c58551a9bf6bb863c42741bf3d0015632576e26ee89579d0ff933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Levandoski, Justin J.</creatorcontrib><creatorcontrib>Ekstrand, Michael D.</creatorcontrib><creatorcontrib>Ludwig, Michael J.</creatorcontrib><creatorcontrib>Eldawy, Ahmed</creatorcontrib><creatorcontrib>Mokbel, Mohamed F.</creatorcontrib><creatorcontrib>Riedl, John T.</creatorcontrib><title>RecBench: benchmarks for evaluating performance of recommender system architectures</title><title>Proceedings of the VLDB Endowment</title><description>Traditionally, recommender systems have been "hand-built", implemented as custom applications hard-wired to a particular recommendation task. Recently, the database community has begun exploring alternative DBMS-based recommender system architectures, whereby a database both stores the recommender system data (e.g., ratings data and the derived recommender models) and generates recommendations using SQL queries. In this paper, we present a comprehensive experimental comparison of both architectures. We define a set of benchmark tasks based on the needs of a typical recommender-powered e-commerce site. We then evaluate the performance of the "hand-built" MultiLens recommender application against two DBMS-based implementations: an unmodified DBMS and RecStore , a DBMS modified to improve efficiency in incremental recommender model updates. We employ two non-trivial data sets in our study: the 10 million rating MovieLens data, and the 100 million rating data set used in the Netflix Challenge. This study is the first of its kind, and our findings reveal an interesting trade-off: "hand-built" recommenders exhibit superior performance in model-building and pure recommendation tasks, while DBMS-based recommenders are superior at more complex recommendation tasks such as providing filtered recommendations and blending text-search with recommendation prediction scores.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpNz01rAjEUheEgFZyqe__E6L35uDdZ6mA_QCiUug6TTEIrtsrEjf9esLNw9Z7VgUeIBcISNbNdKQ2SgZf3SjcSlUQDtQXHTw97Ip5LOQCQJbSVmHymuEl_8Xsmxrk9ljQfOhX7l-1X81bvPl7fm_WujujoUrfkQmDdKWkhGmsMti5kCsGSilqyxpBVB4CGlDRMSVJK1hl2HeTslJoK-P-N_amUPmV_7n9-2_7qEfxd4geJHyTqBhxLN_4</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Levandoski, Justin J.</creator><creator>Ekstrand, Michael D.</creator><creator>Ludwig, Michael J.</creator><creator>Eldawy, Ahmed</creator><creator>Mokbel, Mohamed F.</creator><creator>Riedl, John T.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110801</creationdate><title>RecBench</title><author>Levandoski, Justin J. ; Ekstrand, Michael D. ; Ludwig, Michael J. ; Eldawy, Ahmed ; Mokbel, Mohamed F. ; Riedl, John T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-a69bb74d3280c58551a9bf6bb863c42741bf3d0015632576e26ee89579d0ff933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levandoski, Justin J.</creatorcontrib><creatorcontrib>Ekstrand, Michael D.</creatorcontrib><creatorcontrib>Ludwig, Michael J.</creatorcontrib><creatorcontrib>Eldawy, Ahmed</creatorcontrib><creatorcontrib>Mokbel, Mohamed F.</creatorcontrib><creatorcontrib>Riedl, John T.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levandoski, Justin J.</au><au>Ekstrand, Michael D.</au><au>Ludwig, Michael J.</au><au>Eldawy, Ahmed</au><au>Mokbel, Mohamed F.</au><au>Riedl, John T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RecBench: benchmarks for evaluating performance of recommender system architectures</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>4</volume><issue>11</issue><spage>911</spage><epage>920</epage><pages>911-920</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Traditionally, recommender systems have been "hand-built", implemented as custom applications hard-wired to a particular recommendation task. Recently, the database community has begun exploring alternative DBMS-based recommender system architectures, whereby a database both stores the recommender system data (e.g., ratings data and the derived recommender models) and generates recommendations using SQL queries. In this paper, we present a comprehensive experimental comparison of both architectures. We define a set of benchmark tasks based on the needs of a typical recommender-powered e-commerce site. We then evaluate the performance of the "hand-built" MultiLens recommender application against two DBMS-based implementations: an unmodified DBMS and RecStore , a DBMS modified to improve efficiency in incremental recommender model updates. We employ two non-trivial data sets in our study: the 10 million rating MovieLens data, and the 100 million rating data set used in the Netflix Challenge. This study is the first of its kind, and our findings reveal an interesting trade-off: "hand-built" recommenders exhibit superior performance in model-building and pure recommendation tasks, while DBMS-based recommenders are superior at more complex recommendation tasks such as providing filtered recommendations and blending text-search with recommendation prediction scores.</abstract><doi>10.14778/3402707.3402729</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2011-08, Vol.4 (11), p.911-920
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_3402707_3402729
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
title RecBench: benchmarks for evaluating performance of recommender system architectures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RecBench:%20benchmarks%20for%20evaluating%20performance%20of%20recommender%20system%20architectures&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Levandoski,%20Justin%20J.&rft.date=2011-08-01&rft.volume=4&rft.issue=11&rft.spage=911&rft.epage=920&rft.pages=911-920&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3402707.3402729&rft_dat=%3Ccrossref%3E10_14778_3402707_3402729%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c196t-a69bb74d3280c58551a9bf6bb863c42741bf3d0015632576e26ee89579d0ff933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true