Loading…
In the land of data streams where synopses are missing, one framework to bring them all
In pursuit of real-time data analysis, approximate summarization structures, i.e., synopses, have gained importance over the years. However, existing stream processing systems, such as Flink, Spark, and Storm, do not support synopses as first class citizens, i.e., as pipeline operators. Synopses...
Saved in:
Published in: | Proceedings of the VLDB Endowment 2021-06, Vol.14 (10), p.1818-1831 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In pursuit of real-time data analysis, approximate summarization structures, i.e., synopses, have gained importance over the years. However, existing stream processing systems, such as Flink, Spark, and Storm, do not support synopses as first class citizens, i.e., as pipeline operators. Synopses' implementation is upon users. This is mainly because of the diversity of synopses, which makes a unified implementation difficult. We present Condor, a framework that supports synopses as first class citizens. Condor facilitates the specification and processing of synopsis-based streaming jobs while hiding all internal processing details. Condor's key component is its model that represents synopses as a particular case of windowed aggregate functions. An inherent divide and conquer strategy allows Condor to efficiently distribute the computation, allowing for high-performance and linear scalability. Our evaluation shows that Condor outperforms existing approaches by up to a factor of 75x and that it scales linearly with the number of cores. |
---|---|
ISSN: | 2150-8097 2150-8097 |
DOI: | 10.14778/3467861.3467871 |