Loading…
Columnar storage and list-based processing for graph database management systems
We revisit column-oriented storage and query processing techniques in the context of contemporary graph database management systems (GDBMSs). Similar to column-oriented RDBMSs, GDBMSs support read-heavy analytical workloads that however have fundamentally different data access patterns than traditio...
Saved in:
Published in: | Proceedings of the VLDB Endowment 2021-07, Vol.14 (11), p.2491-2504 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We revisit column-oriented storage and query processing techniques in the context of contemporary graph database management systems (GDBMSs). Similar to column-oriented RDBMSs, GDBMSs support read-heavy analytical workloads that however have fundamentally different data access patterns than traditional analytical workloads. We first derive a set of desiderata for optimizing storage and query processors of GDBMS based on their access patterns. We then present the design of columnar storage, compression, and query processing techniques based on these desiderata. In addition to showing direct integration of existing techniques from columnar RDBMSs, we also propose novel ones that are optimized for GDBMSs. These include a novel list-based query processor, which avoids expensive data copies of traditional block-based processors under many-to-many joins, a new data structure we call single-indexed edge property pages and an accompanying edge ID scheme, and a new application of Jacobson's bit vector index for compressing NULL values and empty lists. We integrated our techniques into the GraphflowDB in-memory GDBMS. Through extensive experiments, we demonstrate the scalability and query performance benefits of our techniques. |
---|---|
ISSN: | 2150-8097 2150-8097 |
DOI: | 10.14778/3476249.3476297 |