Loading…

Seiden: Revisiting Query Processing in Video Database Systems

State-of-the-art video database management systems (VDBMSs) often use lightweight proxy models to accelerate object retrieval and aggregate queries. The key assumption underlying these systems is that the proxy model is an order of magnitude faster than the heavyweight oracle model. However, recent...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the VLDB Endowment 2023-05, Vol.16 (9), p.2289-2301
Main Authors: Bang, Jaeho, Kakkar, Gaurav Tarlok, Chunduri, Pramod, Mitra, Subrata, Arulraj, Joy
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c196t-be75fee0f53c3aec0bbb19f3cef384dcc765122cdd1abd4030d2de49f37465813
container_end_page 2301
container_issue 9
container_start_page 2289
container_title Proceedings of the VLDB Endowment
container_volume 16
creator Bang, Jaeho
Kakkar, Gaurav Tarlok
Chunduri, Pramod
Mitra, Subrata
Arulraj, Joy
description State-of-the-art video database management systems (VDBMSs) often use lightweight proxy models to accelerate object retrieval and aggregate queries. The key assumption underlying these systems is that the proxy model is an order of magnitude faster than the heavyweight oracle model. However, recent advances in computer vision have invalidated this assumption. Inference time of recently proposed oracle models is on par with or even lower than the proxy models used in state-of-the-art (SoTA) VDBMSs. This paper presents Seiden, a VDBMS that leverages this radical shift in the runtime gap between the oracle and proxy models. Instead of relying on a proxy model, Seiden directly applies the oracle model over a subset of frames to build a query-agnostic index, and samples additional frames to answer the query using an exploration-exploitation scheme during query processing. By leveraging the temporal continuity of the video and the output of the oracle model on the sampled frames, Seiden delivers faster query processing and better query accuracy than SoTA VDBMSs. Our empirical evaluation shows that Seiden is on average 6.6 x faster than SoTA VDBMSs across diverse queries and datasets.
doi_str_mv 10.14778/3598581.3598599
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_3598581_3598599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_3598581_3598599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-be75fee0f53c3aec0bbb19f3cef384dcc765122cdd1abd4030d2de49f37465813</originalsourceid><addsrcrecordid>eNpNj81KxDAYRYMoOI7uXeYFOn5pmiYRXMjoqDDgz6jbkp8vEnFaSarQt7eOXbi6l8vhwiHklMGCVVKqMy60Eootdqn1HpmVTEChQMv9f_2QHOX8DlCrmqkZudhg9Nie0yf8jjn2sX2jj1-YBvqQOoc5_w6xpa8j1dEr0xtrMtLNkHvc5mNyEMxHxpMp5-Rldf28vC3W9zd3y8t14Ziu-8KiFAERguCOG3RgrWU6cIeBq8o7J2vBytJ5z4z1FXDwpcdqJGRVj058TuDv16Uu54Sh-Uxxa9LQMGh2-s2k30z6_AcRRE3k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Seiden: Revisiting Query Processing in Video Database Systems</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Bang, Jaeho ; Kakkar, Gaurav Tarlok ; Chunduri, Pramod ; Mitra, Subrata ; Arulraj, Joy</creator><creatorcontrib>Bang, Jaeho ; Kakkar, Gaurav Tarlok ; Chunduri, Pramod ; Mitra, Subrata ; Arulraj, Joy</creatorcontrib><description>State-of-the-art video database management systems (VDBMSs) often use lightweight proxy models to accelerate object retrieval and aggregate queries. The key assumption underlying these systems is that the proxy model is an order of magnitude faster than the heavyweight oracle model. However, recent advances in computer vision have invalidated this assumption. Inference time of recently proposed oracle models is on par with or even lower than the proxy models used in state-of-the-art (SoTA) VDBMSs. This paper presents Seiden, a VDBMS that leverages this radical shift in the runtime gap between the oracle and proxy models. Instead of relying on a proxy model, Seiden directly applies the oracle model over a subset of frames to build a query-agnostic index, and samples additional frames to answer the query using an exploration-exploitation scheme during query processing. By leveraging the temporal continuity of the video and the output of the oracle model on the sampled frames, Seiden delivers faster query processing and better query accuracy than SoTA VDBMSs. Our empirical evaluation shows that Seiden is on average 6.6 x faster than SoTA VDBMSs across diverse queries and datasets.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/3598581.3598599</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2023-05, Vol.16 (9), p.2289-2301</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-be75fee0f53c3aec0bbb19f3cef384dcc765122cdd1abd4030d2de49f37465813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Bang, Jaeho</creatorcontrib><creatorcontrib>Kakkar, Gaurav Tarlok</creatorcontrib><creatorcontrib>Chunduri, Pramod</creatorcontrib><creatorcontrib>Mitra, Subrata</creatorcontrib><creatorcontrib>Arulraj, Joy</creatorcontrib><title>Seiden: Revisiting Query Processing in Video Database Systems</title><title>Proceedings of the VLDB Endowment</title><description>State-of-the-art video database management systems (VDBMSs) often use lightweight proxy models to accelerate object retrieval and aggregate queries. The key assumption underlying these systems is that the proxy model is an order of magnitude faster than the heavyweight oracle model. However, recent advances in computer vision have invalidated this assumption. Inference time of recently proposed oracle models is on par with or even lower than the proxy models used in state-of-the-art (SoTA) VDBMSs. This paper presents Seiden, a VDBMS that leverages this radical shift in the runtime gap between the oracle and proxy models. Instead of relying on a proxy model, Seiden directly applies the oracle model over a subset of frames to build a query-agnostic index, and samples additional frames to answer the query using an exploration-exploitation scheme during query processing. By leveraging the temporal continuity of the video and the output of the oracle model on the sampled frames, Seiden delivers faster query processing and better query accuracy than SoTA VDBMSs. Our empirical evaluation shows that Seiden is on average 6.6 x faster than SoTA VDBMSs across diverse queries and datasets.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNj81KxDAYRYMoOI7uXeYFOn5pmiYRXMjoqDDgz6jbkp8vEnFaSarQt7eOXbi6l8vhwiHklMGCVVKqMy60Eootdqn1HpmVTEChQMv9f_2QHOX8DlCrmqkZudhg9Nie0yf8jjn2sX2jj1-YBvqQOoc5_w6xpa8j1dEr0xtrMtLNkHvc5mNyEMxHxpMp5-Rldf28vC3W9zd3y8t14Ziu-8KiFAERguCOG3RgrWU6cIeBq8o7J2vBytJ5z4z1FXDwpcdqJGRVj058TuDv16Uu54Sh-Uxxa9LQMGh2-s2k30z6_AcRRE3k</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Bang, Jaeho</creator><creator>Kakkar, Gaurav Tarlok</creator><creator>Chunduri, Pramod</creator><creator>Mitra, Subrata</creator><creator>Arulraj, Joy</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230501</creationdate><title>Seiden: Revisiting Query Processing in Video Database Systems</title><author>Bang, Jaeho ; Kakkar, Gaurav Tarlok ; Chunduri, Pramod ; Mitra, Subrata ; Arulraj, Joy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-be75fee0f53c3aec0bbb19f3cef384dcc765122cdd1abd4030d2de49f37465813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bang, Jaeho</creatorcontrib><creatorcontrib>Kakkar, Gaurav Tarlok</creatorcontrib><creatorcontrib>Chunduri, Pramod</creatorcontrib><creatorcontrib>Mitra, Subrata</creatorcontrib><creatorcontrib>Arulraj, Joy</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bang, Jaeho</au><au>Kakkar, Gaurav Tarlok</au><au>Chunduri, Pramod</au><au>Mitra, Subrata</au><au>Arulraj, Joy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seiden: Revisiting Query Processing in Video Database Systems</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>16</volume><issue>9</issue><spage>2289</spage><epage>2301</epage><pages>2289-2301</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>State-of-the-art video database management systems (VDBMSs) often use lightweight proxy models to accelerate object retrieval and aggregate queries. The key assumption underlying these systems is that the proxy model is an order of magnitude faster than the heavyweight oracle model. However, recent advances in computer vision have invalidated this assumption. Inference time of recently proposed oracle models is on par with or even lower than the proxy models used in state-of-the-art (SoTA) VDBMSs. This paper presents Seiden, a VDBMS that leverages this radical shift in the runtime gap between the oracle and proxy models. Instead of relying on a proxy model, Seiden directly applies the oracle model over a subset of frames to build a query-agnostic index, and samples additional frames to answer the query using an exploration-exploitation scheme during query processing. By leveraging the temporal continuity of the video and the output of the oracle model on the sampled frames, Seiden delivers faster query processing and better query accuracy than SoTA VDBMSs. Our empirical evaluation shows that Seiden is on average 6.6 x faster than SoTA VDBMSs across diverse queries and datasets.</abstract><doi>10.14778/3598581.3598599</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2023-05, Vol.16 (9), p.2289-2301
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_3598581_3598599
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
title Seiden: Revisiting Query Processing in Video Database Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seiden:%20Revisiting%20Query%20Processing%20in%20Video%20Database%20Systems&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Bang,%20Jaeho&rft.date=2023-05-01&rft.volume=16&rft.issue=9&rft.spage=2289&rft.epage=2301&rft.pages=2289-2301&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/3598581.3598599&rft_dat=%3Ccrossref%3E10_14778_3598581_3598599%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c196t-be75fee0f53c3aec0bbb19f3cef384dcc765122cdd1abd4030d2de49f37465813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true