Loading…

Endogenous Nitric Oxide Inhibits Growth Hormone Secretion through Cyclic Guanosine Monophosphate-Dependent Mechanisms in GH3 Cells

Constitutive nitric oxide synthase (NOS) is expressed in rat adenohypophysis and clonal GH3 cells. The mechanisms of action of nitric oxide (NO) to inhibit hormone secretion and the possible role of (6R)-5, 6, 7, 8-tetrahydro-L-biopterin (THB) in the action of endogenous NO were studied in GH3 cells...

Full description

Saved in:
Bibliographic Details
Published in:ENDOCRINE JOURNAL 1999, Vol.46(6), pp.779-785
Main Authors: TSUMORI, MICHIHIRO, MURAKAMI, YOSHIO, KOSHIMURA, KUNIO, KATO, YUZURU
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Constitutive nitric oxide synthase (NOS) is expressed in rat adenohypophysis and clonal GH3 cells. The mechanisms of action of nitric oxide (NO) to inhibit hormone secretion and the possible role of (6R)-5, 6, 7, 8-tetrahydro-L-biopterin (THB) in the action of endogenous NO were studied in GH3 cells. Inhibiting NOS with NG-nitro-L-arginine or trapping NO with oxyhemoglobin enhanced both the basal and TRH-stimulated rat GH release. Sodium nitroprusside did not further decrease either the basal or the TRH-stimulated GH secretion, suggesting that endogenous NO exerted the maximal inhibitory effect. Inhibition of de novo synthesis of THB increased GH secretion. A cyclic guanosine-monophosphate (cGMP) antagonist did not increase the basal GH secretion but enhanced TRH-induced GH release. These findings suggest that endogenous NO plays an inhibitory role on basal GH release and TRH-stimulated hormone release from GH3 cells in an autocrine or paracrine fashion, at least partly, through a cGMP-dependent pathway. It is also suggested that endogenous THB plays a role in NO production and subsequent inhibition of hormone secretion in GH3 cells.
ISSN:0918-8959
1348-4540
DOI:10.1507/endocrj.46.779