Loading…
Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations
We introduce a class of discrete velocity BGK type approximations to multidimensional scalar nonlinearly diffusive conservation laws. We prove the well-posedness of these models, a priori bounds and kinetic entropy inequalities that allow to pass into the limit towards the unique entropy solution re...
Saved in:
Published in: | Indiana University mathematics journal 2000, Vol.49 (2), p.723-749 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c308t-e719c28f76c5105d91d81645c420a77b8ae38eb1cb253dc740f053504d2e80ab3 |
---|---|
cites | |
container_end_page | 749 |
container_issue | 2 |
container_start_page | 723 |
container_title | Indiana University mathematics journal |
container_volume | 49 |
creator | Bouchut, F. Guarguaglini, F.R. Natalini, R. |
description | We introduce a class of discrete velocity BGK type approximations to multidimensional scalar nonlinearly diffusive conservation laws. We prove the well-posedness of these models, a priori bounds and kinetic entropy inequalities that allow to pass into the limit towards the unique entropy solution recently obtained by Carrillo. Examples of such BGK models are provided. |
doi_str_mv | 10.1512/iumj.2000.49.1811 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1512_iumj_2000_49_1811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24901092</jstor_id><sourcerecordid>24901092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-e719c28f76c5105d91d81645c420a77b8ae38eb1cb253dc740f053504d2e80ab3</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0EEqXwASyQ8gMJ9_rR2MtSSkEUygLWkePYkqs0LnaC4O9pVMRqFqMzGh1CrhEKFEhv_bDbFhQACq4KlIgnZIKKs1xQIU_JBIDSnAqU5-QipS0AKwVTE7K5984NyX_Z7G71nM33-xi-_U73PnQpcyFmr6FrfWd1zF6GtveN39kuHVrdZm866jq03mTLz-GIXJIzp9tkr_5ySj4elu-Lx3y9WT0t5uvcMJB9bktUhkpXzoxAEI3CRuKMC8Mp6LKspbZM2hpNTQVrTMnBgWACeEOtBF2zKcHjrokhpWhdtY-H2_GnQqhGI9VopBqNVFxVo5EDc3NktqkP8R-gXAGCouwXVaBfVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Bouchut, F. ; Guarguaglini, F.R. ; Natalini, R.</creator><creatorcontrib>Bouchut, F. ; Guarguaglini, F.R. ; Natalini, R.</creatorcontrib><description>We introduce a class of discrete velocity BGK type approximations to multidimensional scalar nonlinearly diffusive conservation laws. We prove the well-posedness of these models, a priori bounds and kinetic entropy inequalities that allow to pass into the limit towards the unique entropy solution recently obtained by Carrillo. Examples of such BGK models are provided.</description><identifier>ISSN: 0022-2518</identifier><identifier>EISSN: 1943-5258</identifier><identifier>DOI: 10.1512/iumj.2000.49.1811</identifier><language>eng</language><publisher>Department of Mathematics INDIANA UNIVERSITY</publisher><subject>Applied mathematics ; Approximation ; Cauchy problem ; Conservation laws ; Entropy ; Kinetics ; Mathematical vectors ; Uniqueness ; Velocity</subject><ispartof>Indiana University mathematics journal, 2000, Vol.49 (2), p.723-749</ispartof><rights>2000 Department of Mathematics, Indiana University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-e719c28f76c5105d91d81645c420a77b8ae38eb1cb253dc740f053504d2e80ab3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24901092$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24901092$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Bouchut, F.</creatorcontrib><creatorcontrib>Guarguaglini, F.R.</creatorcontrib><creatorcontrib>Natalini, R.</creatorcontrib><title>Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations</title><title>Indiana University mathematics journal</title><description>We introduce a class of discrete velocity BGK type approximations to multidimensional scalar nonlinearly diffusive conservation laws. We prove the well-posedness of these models, a priori bounds and kinetic entropy inequalities that allow to pass into the limit towards the unique entropy solution recently obtained by Carrillo. Examples of such BGK models are provided.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Cauchy problem</subject><subject>Conservation laws</subject><subject>Entropy</subject><subject>Kinetics</subject><subject>Mathematical vectors</subject><subject>Uniqueness</subject><subject>Velocity</subject><issn>0022-2518</issn><issn>1943-5258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAURC0EEqXwASyQ8gMJ9_rR2MtSSkEUygLWkePYkqs0LnaC4O9pVMRqFqMzGh1CrhEKFEhv_bDbFhQACq4KlIgnZIKKs1xQIU_JBIDSnAqU5-QipS0AKwVTE7K5984NyX_Z7G71nM33-xi-_U73PnQpcyFmr6FrfWd1zF6GtveN39kuHVrdZm866jq03mTLz-GIXJIzp9tkr_5ySj4elu-Lx3y9WT0t5uvcMJB9bktUhkpXzoxAEI3CRuKMC8Mp6LKspbZM2hpNTQVrTMnBgWACeEOtBF2zKcHjrokhpWhdtY-H2_GnQqhGI9VopBqNVFxVo5EDc3NktqkP8R-gXAGCouwXVaBfVw</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Bouchut, F.</creator><creator>Guarguaglini, F.R.</creator><creator>Natalini, R.</creator><general>Department of Mathematics INDIANA UNIVERSITY</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2000</creationdate><title>Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations</title><author>Bouchut, F. ; Guarguaglini, F.R. ; Natalini, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-e719c28f76c5105d91d81645c420a77b8ae38eb1cb253dc740f053504d2e80ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Cauchy problem</topic><topic>Conservation laws</topic><topic>Entropy</topic><topic>Kinetics</topic><topic>Mathematical vectors</topic><topic>Uniqueness</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouchut, F.</creatorcontrib><creatorcontrib>Guarguaglini, F.R.</creatorcontrib><creatorcontrib>Natalini, R.</creatorcontrib><collection>CrossRef</collection><jtitle>Indiana University mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouchut, F.</au><au>Guarguaglini, F.R.</au><au>Natalini, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations</atitle><jtitle>Indiana University mathematics journal</jtitle><date>2000</date><risdate>2000</risdate><volume>49</volume><issue>2</issue><spage>723</spage><epage>749</epage><pages>723-749</pages><issn>0022-2518</issn><eissn>1943-5258</eissn><abstract>We introduce a class of discrete velocity BGK type approximations to multidimensional scalar nonlinearly diffusive conservation laws. We prove the well-posedness of these models, a priori bounds and kinetic entropy inequalities that allow to pass into the limit towards the unique entropy solution recently obtained by Carrillo. Examples of such BGK models are provided.</abstract><pub>Department of Mathematics INDIANA UNIVERSITY</pub><doi>10.1512/iumj.2000.49.1811</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2518 |
ispartof | Indiana University mathematics journal, 2000, Vol.49 (2), p.723-749 |
issn | 0022-2518 1943-5258 |
language | eng |
recordid | cdi_crossref_primary_10_1512_iumj_2000_49_1811 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Applied mathematics Approximation Cauchy problem Conservation laws Entropy Kinetics Mathematical vectors Uniqueness Velocity |
title | Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusive%20BGK%20Approximations%20for%20Nonlinear%20Multidimensional%20Parabolic%20Equations&rft.jtitle=Indiana%20University%20mathematics%20journal&rft.au=Bouchut,%20F.&rft.date=2000&rft.volume=49&rft.issue=2&rft.spage=723&rft.epage=749&rft.pages=723-749&rft.issn=0022-2518&rft.eissn=1943-5258&rft_id=info:doi/10.1512/iumj.2000.49.1811&rft_dat=%3Cjstor_cross%3E24901092%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-e719c28f76c5105d91d81645c420a77b8ae38eb1cb253dc740f053504d2e80ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24901092&rfr_iscdi=true |