Loading…

Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations

We introduce a class of discrete velocity BGK type approximations to multidimensional scalar nonlinearly diffusive conservation laws. We prove the well-posedness of these models, a priori bounds and kinetic entropy inequalities that allow to pass into the limit towards the unique entropy solution re...

Full description

Saved in:
Bibliographic Details
Published in:Indiana University mathematics journal 2000, Vol.49 (2), p.723-749
Main Authors: Bouchut, F., Guarguaglini, F.R., Natalini, R.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c308t-e719c28f76c5105d91d81645c420a77b8ae38eb1cb253dc740f053504d2e80ab3
cites
container_end_page 749
container_issue 2
container_start_page 723
container_title Indiana University mathematics journal
container_volume 49
creator Bouchut, F.
Guarguaglini, F.R.
Natalini, R.
description We introduce a class of discrete velocity BGK type approximations to multidimensional scalar nonlinearly diffusive conservation laws. We prove the well-posedness of these models, a priori bounds and kinetic entropy inequalities that allow to pass into the limit towards the unique entropy solution recently obtained by Carrillo. Examples of such BGK models are provided.
doi_str_mv 10.1512/iumj.2000.49.1811
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1512_iumj_2000_49_1811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24901092</jstor_id><sourcerecordid>24901092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-e719c28f76c5105d91d81645c420a77b8ae38eb1cb253dc740f053504d2e80ab3</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0EEqXwASyQ8gMJ9_rR2MtSSkEUygLWkePYkqs0LnaC4O9pVMRqFqMzGh1CrhEKFEhv_bDbFhQACq4KlIgnZIKKs1xQIU_JBIDSnAqU5-QipS0AKwVTE7K5984NyX_Z7G71nM33-xi-_U73PnQpcyFmr6FrfWd1zF6GtveN39kuHVrdZm866jq03mTLz-GIXJIzp9tkr_5ySj4elu-Lx3y9WT0t5uvcMJB9bktUhkpXzoxAEI3CRuKMC8Mp6LKspbZM2hpNTQVrTMnBgWACeEOtBF2zKcHjrokhpWhdtY-H2_GnQqhGI9VopBqNVFxVo5EDc3NktqkP8R-gXAGCouwXVaBfVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Bouchut, F. ; Guarguaglini, F.R. ; Natalini, R.</creator><creatorcontrib>Bouchut, F. ; Guarguaglini, F.R. ; Natalini, R.</creatorcontrib><description>We introduce a class of discrete velocity BGK type approximations to multidimensional scalar nonlinearly diffusive conservation laws. We prove the well-posedness of these models, a priori bounds and kinetic entropy inequalities that allow to pass into the limit towards the unique entropy solution recently obtained by Carrillo. Examples of such BGK models are provided.</description><identifier>ISSN: 0022-2518</identifier><identifier>EISSN: 1943-5258</identifier><identifier>DOI: 10.1512/iumj.2000.49.1811</identifier><language>eng</language><publisher>Department of Mathematics INDIANA UNIVERSITY</publisher><subject>Applied mathematics ; Approximation ; Cauchy problem ; Conservation laws ; Entropy ; Kinetics ; Mathematical vectors ; Uniqueness ; Velocity</subject><ispartof>Indiana University mathematics journal, 2000, Vol.49 (2), p.723-749</ispartof><rights>2000 Department of Mathematics, Indiana University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-e719c28f76c5105d91d81645c420a77b8ae38eb1cb253dc740f053504d2e80ab3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24901092$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24901092$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Bouchut, F.</creatorcontrib><creatorcontrib>Guarguaglini, F.R.</creatorcontrib><creatorcontrib>Natalini, R.</creatorcontrib><title>Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations</title><title>Indiana University mathematics journal</title><description>We introduce a class of discrete velocity BGK type approximations to multidimensional scalar nonlinearly diffusive conservation laws. We prove the well-posedness of these models, a priori bounds and kinetic entropy inequalities that allow to pass into the limit towards the unique entropy solution recently obtained by Carrillo. Examples of such BGK models are provided.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Cauchy problem</subject><subject>Conservation laws</subject><subject>Entropy</subject><subject>Kinetics</subject><subject>Mathematical vectors</subject><subject>Uniqueness</subject><subject>Velocity</subject><issn>0022-2518</issn><issn>1943-5258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAURC0EEqXwASyQ8gMJ9_rR2MtSSkEUygLWkePYkqs0LnaC4O9pVMRqFqMzGh1CrhEKFEhv_bDbFhQACq4KlIgnZIKKs1xQIU_JBIDSnAqU5-QipS0AKwVTE7K5984NyX_Z7G71nM33-xi-_U73PnQpcyFmr6FrfWd1zF6GtveN39kuHVrdZm866jq03mTLz-GIXJIzp9tkr_5ySj4elu-Lx3y9WT0t5uvcMJB9bktUhkpXzoxAEI3CRuKMC8Mp6LKspbZM2hpNTQVrTMnBgWACeEOtBF2zKcHjrokhpWhdtY-H2_GnQqhGI9VopBqNVFxVo5EDc3NktqkP8R-gXAGCouwXVaBfVw</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Bouchut, F.</creator><creator>Guarguaglini, F.R.</creator><creator>Natalini, R.</creator><general>Department of Mathematics INDIANA UNIVERSITY</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2000</creationdate><title>Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations</title><author>Bouchut, F. ; Guarguaglini, F.R. ; Natalini, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-e719c28f76c5105d91d81645c420a77b8ae38eb1cb253dc740f053504d2e80ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Cauchy problem</topic><topic>Conservation laws</topic><topic>Entropy</topic><topic>Kinetics</topic><topic>Mathematical vectors</topic><topic>Uniqueness</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouchut, F.</creatorcontrib><creatorcontrib>Guarguaglini, F.R.</creatorcontrib><creatorcontrib>Natalini, R.</creatorcontrib><collection>CrossRef</collection><jtitle>Indiana University mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouchut, F.</au><au>Guarguaglini, F.R.</au><au>Natalini, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations</atitle><jtitle>Indiana University mathematics journal</jtitle><date>2000</date><risdate>2000</risdate><volume>49</volume><issue>2</issue><spage>723</spage><epage>749</epage><pages>723-749</pages><issn>0022-2518</issn><eissn>1943-5258</eissn><abstract>We introduce a class of discrete velocity BGK type approximations to multidimensional scalar nonlinearly diffusive conservation laws. We prove the well-posedness of these models, a priori bounds and kinetic entropy inequalities that allow to pass into the limit towards the unique entropy solution recently obtained by Carrillo. Examples of such BGK models are provided.</abstract><pub>Department of Mathematics INDIANA UNIVERSITY</pub><doi>10.1512/iumj.2000.49.1811</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2518
ispartof Indiana University mathematics journal, 2000, Vol.49 (2), p.723-749
issn 0022-2518
1943-5258
language eng
recordid cdi_crossref_primary_10_1512_iumj_2000_49_1811
source JSTOR Archival Journals and Primary Sources Collection
subjects Applied mathematics
Approximation
Cauchy problem
Conservation laws
Entropy
Kinetics
Mathematical vectors
Uniqueness
Velocity
title Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusive%20BGK%20Approximations%20for%20Nonlinear%20Multidimensional%20Parabolic%20Equations&rft.jtitle=Indiana%20University%20mathematics%20journal&rft.au=Bouchut,%20F.&rft.date=2000&rft.volume=49&rft.issue=2&rft.spage=723&rft.epage=749&rft.pages=723-749&rft.issn=0022-2518&rft.eissn=1943-5258&rft_id=info:doi/10.1512/iumj.2000.49.1811&rft_dat=%3Cjstor_cross%3E24901092%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-e719c28f76c5105d91d81645c420a77b8ae38eb1cb253dc740f053504d2e80ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24901092&rfr_iscdi=true