Loading…
A Notion of Rectifiability Modeled on Carnot Groups
We introduce a notion of rectifiability modeled on Carnot groups. Precisely, for E a subset of a Carnot group M and N a subgroup of M, we say E is N-rectifiable if it is the Lipschitz image of a positive measure subset of N. First, we discuss the implications of N-rectifiability, where N is a Carnot...
Saved in:
Published in: | Indiana University mathematics journal 2004-01, Vol.53 (1), p.49-81 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-ab33baa8b4880befc52b6f6428765b6de9eb73a29e2454c4cdf88b67cd1ab88d3 |
---|---|
cites | |
container_end_page | 81 |
container_issue | 1 |
container_start_page | 49 |
container_title | Indiana University mathematics journal |
container_volume | 53 |
creator | Pauls, Scott D. |
description | We introduce a notion of rectifiability modeled on Carnot groups. Precisely, for E a subset of a Carnot group M and N a subgroup of M, we say E is N-rectifiable if it is the Lipschitz image of a positive measure subset of N. First, we discuss the implications of N-rectifiability, where N is a Carnot group (not merely a subgroup of a Carnot group), which include N-approximability and the existence of approximate tangent cones isometric to N almost everywhere in E. Second, we prove that, under a stronger condition concerning the existence of approximate tangent cones isomorphic to N almost everywhere in a set E, that E is N-rectifiable. Third, we investigate the rectifiability properties of level sets of $C^1_N$ functions, f : N → ℝ, where N is a Carnot group. We show that for almost every t ∈ ℝ and almost every noncharacteristic x ∈ f−1(t), there exist a subgroup Tx of H and r > 0 so that f−1(t) ∩ BH(x,r) is Tx-approximable at x and an approximate tangent cone isomorphic to Tx at x. |
doi_str_mv | 10.1512/iumj.2004.53.2293 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1512_iumj_2004_53_2293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24903457</jstor_id><sourcerecordid>24903457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ab33baa8b4880befc52b6f6428765b6de9eb73a29e2454c4cdf88b67cd1ab88d3</originalsourceid><addsrcrecordid>eNpFkEFLwzAYhoMoWKc_wIPQi8fW5EvSJscxdApTQfQckjSBlG4ZSXfYv7dlQ0_f4X2fF54PoXuCa8IJPIXDtq8BY1ZzWgNIeoEKIhmtOHBxiQqMASrgRFyjm5x7jGnLqSwQXZYfcQxxV0Zffjk7Bh-0CUMYj-V77NzgunIKVzrt4liuUzzs8y268nrI7u58F-jn5fl79VptPtdvq-WmsiD5WGlDqdFaGCYENs5bDqbxDQPRNtw0nZPOtFSDdMA4s8x2XgjTtLYj2gjR0QUip12bYs7JebVPYavTURGsZms1W6vZWnGqZuuJeTwxe52tHnzSOxvyP8ib6SGT-gI9nHp9HmP6y4FJTBlv6S_YwmIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Notion of Rectifiability Modeled on Carnot Groups</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Pauls, Scott D.</creator><creatorcontrib>Pauls, Scott D.</creatorcontrib><description>We introduce a notion of rectifiability modeled on Carnot groups. Precisely, for E a subset of a Carnot group M and N a subgroup of M, we say E is N-rectifiable if it is the Lipschitz image of a positive measure subset of N. First, we discuss the implications of N-rectifiability, where N is a Carnot group (not merely a subgroup of a Carnot group), which include N-approximability and the existence of approximate tangent cones isometric to N almost everywhere in E. Second, we prove that, under a stronger condition concerning the existence of approximate tangent cones isomorphic to N almost everywhere in a set E, that E is N-rectifiable. Third, we investigate the rectifiability properties of level sets of $C^1_N$ functions, f : N → ℝ, where N is a Carnot group. We show that for almost every t ∈ ℝ and almost every noncharacteristic x ∈ f−1(t), there exist a subgroup Tx of H and r > 0 so that f−1(t) ∩ BH(x,r) is Tx-approximable at x and an approximate tangent cone isomorphic to Tx at x.</description><identifier>ISSN: 0022-2518</identifier><identifier>EISSN: 1943-5258</identifier><identifier>DOI: 10.1512/iumj.2004.53.2293</identifier><identifier>CODEN: IUMJAB</identifier><language>eng</language><publisher>Bloomington, IN: Department of Mathematics INDIANA UNIVERSITY</publisher><subject>Algebra ; Calculus of variations and optimal control ; Density ; Differential geometry ; Euclidean space ; Exact sciences and technology ; Geometry ; Hausdorff dimensions ; Hausdorff measures ; Lie groups ; Mathematical analysis ; Mathematical theorems ; Mathematics ; Sciences and techniques of general use ; Tangents</subject><ispartof>Indiana University mathematics journal, 2004-01, Vol.53 (1), p.49-81</ispartof><rights>2004 Department of Mathematics, Indiana University</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ab33baa8b4880befc52b6f6428765b6de9eb73a29e2454c4cdf88b67cd1ab88d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24903457$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24903457$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15652575$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pauls, Scott D.</creatorcontrib><title>A Notion of Rectifiability Modeled on Carnot Groups</title><title>Indiana University mathematics journal</title><description>We introduce a notion of rectifiability modeled on Carnot groups. Precisely, for E a subset of a Carnot group M and N a subgroup of M, we say E is N-rectifiable if it is the Lipschitz image of a positive measure subset of N. First, we discuss the implications of N-rectifiability, where N is a Carnot group (not merely a subgroup of a Carnot group), which include N-approximability and the existence of approximate tangent cones isometric to N almost everywhere in E. Second, we prove that, under a stronger condition concerning the existence of approximate tangent cones isomorphic to N almost everywhere in a set E, that E is N-rectifiable. Third, we investigate the rectifiability properties of level sets of $C^1_N$ functions, f : N → ℝ, where N is a Carnot group. We show that for almost every t ∈ ℝ and almost every noncharacteristic x ∈ f−1(t), there exist a subgroup Tx of H and r > 0 so that f−1(t) ∩ BH(x,r) is Tx-approximable at x and an approximate tangent cone isomorphic to Tx at x.</description><subject>Algebra</subject><subject>Calculus of variations and optimal control</subject><subject>Density</subject><subject>Differential geometry</subject><subject>Euclidean space</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Hausdorff dimensions</subject><subject>Hausdorff measures</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Tangents</subject><issn>0022-2518</issn><issn>1943-5258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLwzAYhoMoWKc_wIPQi8fW5EvSJscxdApTQfQckjSBlG4ZSXfYv7dlQ0_f4X2fF54PoXuCa8IJPIXDtq8BY1ZzWgNIeoEKIhmtOHBxiQqMASrgRFyjm5x7jGnLqSwQXZYfcQxxV0Zffjk7Bh-0CUMYj-V77NzgunIKVzrt4liuUzzs8y268nrI7u58F-jn5fl79VptPtdvq-WmsiD5WGlDqdFaGCYENs5bDqbxDQPRNtw0nZPOtFSDdMA4s8x2XgjTtLYj2gjR0QUip12bYs7JebVPYavTURGsZms1W6vZWnGqZuuJeTwxe52tHnzSOxvyP8ib6SGT-gI9nHp9HmP6y4FJTBlv6S_YwmIM</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Pauls, Scott D.</creator><general>Department of Mathematics INDIANA UNIVERSITY</general><general>Indiana University</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040101</creationdate><title>A Notion of Rectifiability Modeled on Carnot Groups</title><author>Pauls, Scott D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ab33baa8b4880befc52b6f6428765b6de9eb73a29e2454c4cdf88b67cd1ab88d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algebra</topic><topic>Calculus of variations and optimal control</topic><topic>Density</topic><topic>Differential geometry</topic><topic>Euclidean space</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Hausdorff dimensions</topic><topic>Hausdorff measures</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Tangents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pauls, Scott D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Indiana University mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pauls, Scott D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Notion of Rectifiability Modeled on Carnot Groups</atitle><jtitle>Indiana University mathematics journal</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>53</volume><issue>1</issue><spage>49</spage><epage>81</epage><pages>49-81</pages><issn>0022-2518</issn><eissn>1943-5258</eissn><coden>IUMJAB</coden><abstract>We introduce a notion of rectifiability modeled on Carnot groups. Precisely, for E a subset of a Carnot group M and N a subgroup of M, we say E is N-rectifiable if it is the Lipschitz image of a positive measure subset of N. First, we discuss the implications of N-rectifiability, where N is a Carnot group (not merely a subgroup of a Carnot group), which include N-approximability and the existence of approximate tangent cones isometric to N almost everywhere in E. Second, we prove that, under a stronger condition concerning the existence of approximate tangent cones isomorphic to N almost everywhere in a set E, that E is N-rectifiable. Third, we investigate the rectifiability properties of level sets of $C^1_N$ functions, f : N → ℝ, where N is a Carnot group. We show that for almost every t ∈ ℝ and almost every noncharacteristic x ∈ f−1(t), there exist a subgroup Tx of H and r > 0 so that f−1(t) ∩ BH(x,r) is Tx-approximable at x and an approximate tangent cone isomorphic to Tx at x.</abstract><cop>Bloomington, IN</cop><pub>Department of Mathematics INDIANA UNIVERSITY</pub><doi>10.1512/iumj.2004.53.2293</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2518 |
ispartof | Indiana University mathematics journal, 2004-01, Vol.53 (1), p.49-81 |
issn | 0022-2518 1943-5258 |
language | eng |
recordid | cdi_crossref_primary_10_1512_iumj_2004_53_2293 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Algebra Calculus of variations and optimal control Density Differential geometry Euclidean space Exact sciences and technology Geometry Hausdorff dimensions Hausdorff measures Lie groups Mathematical analysis Mathematical theorems Mathematics Sciences and techniques of general use Tangents |
title | A Notion of Rectifiability Modeled on Carnot Groups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Notion%20of%20Rectifiability%20Modeled%20on%20Carnot%20Groups&rft.jtitle=Indiana%20University%20mathematics%20journal&rft.au=Pauls,%20Scott%20D.&rft.date=2004-01-01&rft.volume=53&rft.issue=1&rft.spage=49&rft.epage=81&rft.pages=49-81&rft.issn=0022-2518&rft.eissn=1943-5258&rft.coden=IUMJAB&rft_id=info:doi/10.1512/iumj.2004.53.2293&rft_dat=%3Cjstor_cross%3E24903457%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-ab33baa8b4880befc52b6f6428765b6de9eb73a29e2454c4cdf88b67cd1ab88d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24903457&rfr_iscdi=true |