Loading…

A Notion of Rectifiability Modeled on Carnot Groups

We introduce a notion of rectifiability modeled on Carnot groups. Precisely, for E a subset of a Carnot group M and N a subgroup of M, we say E is N-rectifiable if it is the Lipschitz image of a positive measure subset of N. First, we discuss the implications of N-rectifiability, where N is a Carnot...

Full description

Saved in:
Bibliographic Details
Published in:Indiana University mathematics journal 2004-01, Vol.53 (1), p.49-81
Main Author: Pauls, Scott D.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-ab33baa8b4880befc52b6f6428765b6de9eb73a29e2454c4cdf88b67cd1ab88d3
cites
container_end_page 81
container_issue 1
container_start_page 49
container_title Indiana University mathematics journal
container_volume 53
creator Pauls, Scott D.
description We introduce a notion of rectifiability modeled on Carnot groups. Precisely, for E a subset of a Carnot group M and N a subgroup of M, we say E is N-rectifiable if it is the Lipschitz image of a positive measure subset of N. First, we discuss the implications of N-rectifiability, where N is a Carnot group (not merely a subgroup of a Carnot group), which include N-approximability and the existence of approximate tangent cones isometric to N almost everywhere in E. Second, we prove that, under a stronger condition concerning the existence of approximate tangent cones isomorphic to N almost everywhere in a set E, that E is N-rectifiable. Third, we investigate the rectifiability properties of level sets of $C^1_N$ functions, f : N → ℝ, where N is a Carnot group. We show that for almost every t ∈ ℝ and almost every noncharacteristic x ∈ f−1(t), there exist a subgroup Tx of H and r > 0 so that f−1(t) ∩ BH(x,r) is Tx-approximable at x and an approximate tangent cone isomorphic to Tx at x.
doi_str_mv 10.1512/iumj.2004.53.2293
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1512_iumj_2004_53_2293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24903457</jstor_id><sourcerecordid>24903457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ab33baa8b4880befc52b6f6428765b6de9eb73a29e2454c4cdf88b67cd1ab88d3</originalsourceid><addsrcrecordid>eNpFkEFLwzAYhoMoWKc_wIPQi8fW5EvSJscxdApTQfQckjSBlG4ZSXfYv7dlQ0_f4X2fF54PoXuCa8IJPIXDtq8BY1ZzWgNIeoEKIhmtOHBxiQqMASrgRFyjm5x7jGnLqSwQXZYfcQxxV0Zffjk7Bh-0CUMYj-V77NzgunIKVzrt4liuUzzs8y268nrI7u58F-jn5fl79VptPtdvq-WmsiD5WGlDqdFaGCYENs5bDqbxDQPRNtw0nZPOtFSDdMA4s8x2XgjTtLYj2gjR0QUip12bYs7JebVPYavTURGsZms1W6vZWnGqZuuJeTwxe52tHnzSOxvyP8ib6SGT-gI9nHp9HmP6y4FJTBlv6S_YwmIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Notion of Rectifiability Modeled on Carnot Groups</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Pauls, Scott D.</creator><creatorcontrib>Pauls, Scott D.</creatorcontrib><description>We introduce a notion of rectifiability modeled on Carnot groups. Precisely, for E a subset of a Carnot group M and N a subgroup of M, we say E is N-rectifiable if it is the Lipschitz image of a positive measure subset of N. First, we discuss the implications of N-rectifiability, where N is a Carnot group (not merely a subgroup of a Carnot group), which include N-approximability and the existence of approximate tangent cones isometric to N almost everywhere in E. Second, we prove that, under a stronger condition concerning the existence of approximate tangent cones isomorphic to N almost everywhere in a set E, that E is N-rectifiable. Third, we investigate the rectifiability properties of level sets of $C^1_N$ functions, f : N → ℝ, where N is a Carnot group. We show that for almost every t ∈ ℝ and almost every noncharacteristic x ∈ f−1(t), there exist a subgroup Tx of H and r &gt; 0 so that f−1(t) ∩ BH(x,r) is Tx-approximable at x and an approximate tangent cone isomorphic to Tx at x.</description><identifier>ISSN: 0022-2518</identifier><identifier>EISSN: 1943-5258</identifier><identifier>DOI: 10.1512/iumj.2004.53.2293</identifier><identifier>CODEN: IUMJAB</identifier><language>eng</language><publisher>Bloomington, IN: Department of Mathematics INDIANA UNIVERSITY</publisher><subject>Algebra ; Calculus of variations and optimal control ; Density ; Differential geometry ; Euclidean space ; Exact sciences and technology ; Geometry ; Hausdorff dimensions ; Hausdorff measures ; Lie groups ; Mathematical analysis ; Mathematical theorems ; Mathematics ; Sciences and techniques of general use ; Tangents</subject><ispartof>Indiana University mathematics journal, 2004-01, Vol.53 (1), p.49-81</ispartof><rights>2004 Department of Mathematics, Indiana University</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ab33baa8b4880befc52b6f6428765b6de9eb73a29e2454c4cdf88b67cd1ab88d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24903457$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24903457$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15652575$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pauls, Scott D.</creatorcontrib><title>A Notion of Rectifiability Modeled on Carnot Groups</title><title>Indiana University mathematics journal</title><description>We introduce a notion of rectifiability modeled on Carnot groups. Precisely, for E a subset of a Carnot group M and N a subgroup of M, we say E is N-rectifiable if it is the Lipschitz image of a positive measure subset of N. First, we discuss the implications of N-rectifiability, where N is a Carnot group (not merely a subgroup of a Carnot group), which include N-approximability and the existence of approximate tangent cones isometric to N almost everywhere in E. Second, we prove that, under a stronger condition concerning the existence of approximate tangent cones isomorphic to N almost everywhere in a set E, that E is N-rectifiable. Third, we investigate the rectifiability properties of level sets of $C^1_N$ functions, f : N → ℝ, where N is a Carnot group. We show that for almost every t ∈ ℝ and almost every noncharacteristic x ∈ f−1(t), there exist a subgroup Tx of H and r &gt; 0 so that f−1(t) ∩ BH(x,r) is Tx-approximable at x and an approximate tangent cone isomorphic to Tx at x.</description><subject>Algebra</subject><subject>Calculus of variations and optimal control</subject><subject>Density</subject><subject>Differential geometry</subject><subject>Euclidean space</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Hausdorff dimensions</subject><subject>Hausdorff measures</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Tangents</subject><issn>0022-2518</issn><issn>1943-5258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLwzAYhoMoWKc_wIPQi8fW5EvSJscxdApTQfQckjSBlG4ZSXfYv7dlQ0_f4X2fF54PoXuCa8IJPIXDtq8BY1ZzWgNIeoEKIhmtOHBxiQqMASrgRFyjm5x7jGnLqSwQXZYfcQxxV0Zffjk7Bh-0CUMYj-V77NzgunIKVzrt4liuUzzs8y268nrI7u58F-jn5fl79VptPtdvq-WmsiD5WGlDqdFaGCYENs5bDqbxDQPRNtw0nZPOtFSDdMA4s8x2XgjTtLYj2gjR0QUip12bYs7JebVPYavTURGsZms1W6vZWnGqZuuJeTwxe52tHnzSOxvyP8ib6SGT-gI9nHp9HmP6y4FJTBlv6S_YwmIM</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Pauls, Scott D.</creator><general>Department of Mathematics INDIANA UNIVERSITY</general><general>Indiana University</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040101</creationdate><title>A Notion of Rectifiability Modeled on Carnot Groups</title><author>Pauls, Scott D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ab33baa8b4880befc52b6f6428765b6de9eb73a29e2454c4cdf88b67cd1ab88d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algebra</topic><topic>Calculus of variations and optimal control</topic><topic>Density</topic><topic>Differential geometry</topic><topic>Euclidean space</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Hausdorff dimensions</topic><topic>Hausdorff measures</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Tangents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pauls, Scott D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Indiana University mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pauls, Scott D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Notion of Rectifiability Modeled on Carnot Groups</atitle><jtitle>Indiana University mathematics journal</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>53</volume><issue>1</issue><spage>49</spage><epage>81</epage><pages>49-81</pages><issn>0022-2518</issn><eissn>1943-5258</eissn><coden>IUMJAB</coden><abstract>We introduce a notion of rectifiability modeled on Carnot groups. Precisely, for E a subset of a Carnot group M and N a subgroup of M, we say E is N-rectifiable if it is the Lipschitz image of a positive measure subset of N. First, we discuss the implications of N-rectifiability, where N is a Carnot group (not merely a subgroup of a Carnot group), which include N-approximability and the existence of approximate tangent cones isometric to N almost everywhere in E. Second, we prove that, under a stronger condition concerning the existence of approximate tangent cones isomorphic to N almost everywhere in a set E, that E is N-rectifiable. Third, we investigate the rectifiability properties of level sets of $C^1_N$ functions, f : N → ℝ, where N is a Carnot group. We show that for almost every t ∈ ℝ and almost every noncharacteristic x ∈ f−1(t), there exist a subgroup Tx of H and r &gt; 0 so that f−1(t) ∩ BH(x,r) is Tx-approximable at x and an approximate tangent cone isomorphic to Tx at x.</abstract><cop>Bloomington, IN</cop><pub>Department of Mathematics INDIANA UNIVERSITY</pub><doi>10.1512/iumj.2004.53.2293</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2518
ispartof Indiana University mathematics journal, 2004-01, Vol.53 (1), p.49-81
issn 0022-2518
1943-5258
language eng
recordid cdi_crossref_primary_10_1512_iumj_2004_53_2293
source JSTOR Archival Journals and Primary Sources Collection
subjects Algebra
Calculus of variations and optimal control
Density
Differential geometry
Euclidean space
Exact sciences and technology
Geometry
Hausdorff dimensions
Hausdorff measures
Lie groups
Mathematical analysis
Mathematical theorems
Mathematics
Sciences and techniques of general use
Tangents
title A Notion of Rectifiability Modeled on Carnot Groups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Notion%20of%20Rectifiability%20Modeled%20on%20Carnot%20Groups&rft.jtitle=Indiana%20University%20mathematics%20journal&rft.au=Pauls,%20Scott%20D.&rft.date=2004-01-01&rft.volume=53&rft.issue=1&rft.spage=49&rft.epage=81&rft.pages=49-81&rft.issn=0022-2518&rft.eissn=1943-5258&rft.coden=IUMJAB&rft_id=info:doi/10.1512/iumj.2004.53.2293&rft_dat=%3Cjstor_cross%3E24903457%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-ab33baa8b4880befc52b6f6428765b6de9eb73a29e2454c4cdf88b67cd1ab88d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24903457&rfr_iscdi=true