Loading…
Einstein's Equations and The Embedding of 3-dimensional CR Manifolds
We prove several theorems concerning the connection between the local CR embeddability of 3-dimensional CR manifolds, and the existence of algebraically special Maxwell and gravitational fields. We reduce the Einstein equations for spacetimes associated with such fields to a system of CR invariant e...
Saved in:
Published in: | Indiana University mathematics journal 2008-01, Vol.57 (7), p.3131-3176 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-1b892eee8f9d5856e6567c477006f2deb3bdd94d907772e184b6631ac88651243 |
---|---|
cites | |
container_end_page | 3176 |
container_issue | 7 |
container_start_page | 3131 |
container_title | Indiana University mathematics journal |
container_volume | 57 |
creator | Hill, C. Denson Lewandowski, Jerzy Nurowski, Paweł |
description | We prove several theorems concerning the connection between the local CR embeddability of 3-dimensional CR manifolds, and the existence of algebraically special Maxwell and gravitational fields. We reduce the Einstein equations for spacetimes associated with such fields to a system of CR invariant equations on a 3-dimensional CR manifold defined by the fields. Using the reduced Einstein equations we construct two independent CR functions for the corresponding CR manifold. We also point out that the Einstein equations, imposed on spacetimes associated with a 3-dimensional CR manifold, imply that the spacetime metric, after an appropriate rescaling, becomes well defined on a circle bundle over the CR manifold. The circle bundle itself emerges as a consequence of Einstein's equations. |
doi_str_mv | 10.1512/iumj.2008.57.3473 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1512_iumj_2008_57_3473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24903090</jstor_id><sourcerecordid>24903090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-1b892eee8f9d5856e6567c477006f2deb3bdd94d907772e184b6631ac88651243</originalsourceid><addsrcrecordid>eNpFkMtKxDAUhoMoOI4-gAshG3HVmvtlKWO9wIgg4zqkTaIZ2nRsOgvf3pYRXRz-xfm_A-cD4BKjEnNMbuO-25YEIVVyWVIm6RFYYM1owQlXx2CBECEF4VidgrOctwhRyalegPsqpjz6mG4yrL72dox9ytAmBzefHlZd7Z2L6QP2AdLCxc6nPDVsC1dv8MWmGPrW5XNwEmyb_cVvLsH7Q7VZPRXr18fn1d26aChDY4FrpYn3XgXtuOLCCy5kw6RESATifE1r5zRzGkkpiceK1UJQbBulxPQjo0uAD3eboc958MHshtjZ4dtgZGYNZtZgZg2GSzNrmJjrA7OzubFtGGxqYv4DCcZSTuTUuzr0tnnsh_8904iiaX4Ab_xmPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Einstein's Equations and The Embedding of 3-dimensional CR Manifolds</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Hill, C. Denson ; Lewandowski, Jerzy ; Nurowski, Paweł</creator><creatorcontrib>Hill, C. Denson ; Lewandowski, Jerzy ; Nurowski, Paweł</creatorcontrib><description>We prove several theorems concerning the connection between the local CR embeddability of 3-dimensional CR manifolds, and the existence of algebraically special Maxwell and gravitational fields. We reduce the Einstein equations for spacetimes associated with such fields to a system of CR invariant equations on a 3-dimensional CR manifold defined by the fields. Using the reduced Einstein equations we construct two independent CR functions for the corresponding CR manifold. We also point out that the Einstein equations, imposed on spacetimes associated with a 3-dimensional CR manifold, imply that the spacetime metric, after an appropriate rescaling, becomes well defined on a circle bundle over the CR manifold. The circle bundle itself emerges as a consequence of Einstein's equations.</description><identifier>ISSN: 0022-2518</identifier><identifier>EISSN: 1943-5258</identifier><identifier>DOI: 10.1512/iumj.2008.57.3473</identifier><identifier>CODEN: IUMJAB</identifier><language>eng</language><publisher>Bloomington, IN: Department of Mathematics of Indiana University</publisher><subject>Algebra ; Einstein equations ; Exact sciences and technology ; General mathematics ; General, history and biography ; Geodesy ; Manifolds and cell complexes ; Mathematical analysis ; Mathematical congruence ; Mathematical manifolds ; Mathematical theorems ; Mathematics ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Sciences and techniques of general use ; Several complex variables and analytic spaces ; Spacetime ; Tensors ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Vector fields</subject><ispartof>Indiana University mathematics journal, 2008-01, Vol.57 (7), p.3131-3176</ispartof><rights>2008 Department of Mathematics, Indiana University</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-1b892eee8f9d5856e6567c477006f2deb3bdd94d907772e184b6631ac88651243</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24903090$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24903090$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4023,27922,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21177512$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hill, C. Denson</creatorcontrib><creatorcontrib>Lewandowski, Jerzy</creatorcontrib><creatorcontrib>Nurowski, Paweł</creatorcontrib><title>Einstein's Equations and The Embedding of 3-dimensional CR Manifolds</title><title>Indiana University mathematics journal</title><description>We prove several theorems concerning the connection between the local CR embeddability of 3-dimensional CR manifolds, and the existence of algebraically special Maxwell and gravitational fields. We reduce the Einstein equations for spacetimes associated with such fields to a system of CR invariant equations on a 3-dimensional CR manifold defined by the fields. Using the reduced Einstein equations we construct two independent CR functions for the corresponding CR manifold. We also point out that the Einstein equations, imposed on spacetimes associated with a 3-dimensional CR manifold, imply that the spacetime metric, after an appropriate rescaling, becomes well defined on a circle bundle over the CR manifold. The circle bundle itself emerges as a consequence of Einstein's equations.</description><subject>Algebra</subject><subject>Einstein equations</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Geodesy</subject><subject>Manifolds and cell complexes</subject><subject>Mathematical analysis</subject><subject>Mathematical congruence</subject><subject>Mathematical manifolds</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Sciences and techniques of general use</subject><subject>Several complex variables and analytic spaces</subject><subject>Spacetime</subject><subject>Tensors</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Vector fields</subject><issn>0022-2518</issn><issn>1943-5258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkMtKxDAUhoMoOI4-gAshG3HVmvtlKWO9wIgg4zqkTaIZ2nRsOgvf3pYRXRz-xfm_A-cD4BKjEnNMbuO-25YEIVVyWVIm6RFYYM1owQlXx2CBECEF4VidgrOctwhRyalegPsqpjz6mG4yrL72dox9ytAmBzefHlZd7Z2L6QP2AdLCxc6nPDVsC1dv8MWmGPrW5XNwEmyb_cVvLsH7Q7VZPRXr18fn1d26aChDY4FrpYn3XgXtuOLCCy5kw6RESATifE1r5zRzGkkpiceK1UJQbBulxPQjo0uAD3eboc958MHshtjZ4dtgZGYNZtZgZg2GSzNrmJjrA7OzubFtGGxqYv4DCcZSTuTUuzr0tnnsh_8904iiaX4Ab_xmPQ</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Hill, C. Denson</creator><creator>Lewandowski, Jerzy</creator><creator>Nurowski, Paweł</creator><general>Department of Mathematics of Indiana University</general><general>Indiana University</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080101</creationdate><title>Einstein's Equations and The Embedding of 3-dimensional CR Manifolds</title><author>Hill, C. Denson ; Lewandowski, Jerzy ; Nurowski, Paweł</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-1b892eee8f9d5856e6567c477006f2deb3bdd94d907772e184b6631ac88651243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Einstein equations</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Geodesy</topic><topic>Manifolds and cell complexes</topic><topic>Mathematical analysis</topic><topic>Mathematical congruence</topic><topic>Mathematical manifolds</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Sciences and techniques of general use</topic><topic>Several complex variables and analytic spaces</topic><topic>Spacetime</topic><topic>Tensors</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Vector fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hill, C. Denson</creatorcontrib><creatorcontrib>Lewandowski, Jerzy</creatorcontrib><creatorcontrib>Nurowski, Paweł</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Indiana University mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hill, C. Denson</au><au>Lewandowski, Jerzy</au><au>Nurowski, Paweł</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Einstein's Equations and The Embedding of 3-dimensional CR Manifolds</atitle><jtitle>Indiana University mathematics journal</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>57</volume><issue>7</issue><spage>3131</spage><epage>3176</epage><pages>3131-3176</pages><issn>0022-2518</issn><eissn>1943-5258</eissn><coden>IUMJAB</coden><abstract>We prove several theorems concerning the connection between the local CR embeddability of 3-dimensional CR manifolds, and the existence of algebraically special Maxwell and gravitational fields. We reduce the Einstein equations for spacetimes associated with such fields to a system of CR invariant equations on a 3-dimensional CR manifold defined by the fields. Using the reduced Einstein equations we construct two independent CR functions for the corresponding CR manifold. We also point out that the Einstein equations, imposed on spacetimes associated with a 3-dimensional CR manifold, imply that the spacetime metric, after an appropriate rescaling, becomes well defined on a circle bundle over the CR manifold. The circle bundle itself emerges as a consequence of Einstein's equations.</abstract><cop>Bloomington, IN</cop><pub>Department of Mathematics of Indiana University</pub><doi>10.1512/iumj.2008.57.3473</doi><tpages>46</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2518 |
ispartof | Indiana University mathematics journal, 2008-01, Vol.57 (7), p.3131-3176 |
issn | 0022-2518 1943-5258 |
language | eng |
recordid | cdi_crossref_primary_10_1512_iumj_2008_57_3473 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Algebra Einstein equations Exact sciences and technology General mathematics General, history and biography Geodesy Manifolds and cell complexes Mathematical analysis Mathematical congruence Mathematical manifolds Mathematical theorems Mathematics Nonlinear algebraic and transcendental equations Numerical analysis Numerical analysis. Scientific computation Sciences and techniques of general use Several complex variables and analytic spaces Spacetime Tensors Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds Vector fields |
title | Einstein's Equations and The Embedding of 3-dimensional CR Manifolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Einstein's%20Equations%20and%20The%20Embedding%20of%203-dimensional%20CR%20Manifolds&rft.jtitle=Indiana%20University%20mathematics%20journal&rft.au=Hill,%20C.%20Denson&rft.date=2008-01-01&rft.volume=57&rft.issue=7&rft.spage=3131&rft.epage=3176&rft.pages=3131-3176&rft.issn=0022-2518&rft.eissn=1943-5258&rft.coden=IUMJAB&rft_id=info:doi/10.1512/iumj.2008.57.3473&rft_dat=%3Cjstor_cross%3E24903090%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-1b892eee8f9d5856e6567c477006f2deb3bdd94d907772e184b6631ac88651243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24903090&rfr_iscdi=true |