Loading…

Einstein's Equations and The Embedding of 3-dimensional CR Manifolds

We prove several theorems concerning the connection between the local CR embeddability of 3-dimensional CR manifolds, and the existence of algebraically special Maxwell and gravitational fields. We reduce the Einstein equations for spacetimes associated with such fields to a system of CR invariant e...

Full description

Saved in:
Bibliographic Details
Published in:Indiana University mathematics journal 2008-01, Vol.57 (7), p.3131-3176
Main Authors: Hill, C. Denson, Lewandowski, Jerzy, Nurowski, Paweł
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-1b892eee8f9d5856e6567c477006f2deb3bdd94d907772e184b6631ac88651243
cites
container_end_page 3176
container_issue 7
container_start_page 3131
container_title Indiana University mathematics journal
container_volume 57
creator Hill, C. Denson
Lewandowski, Jerzy
Nurowski, Paweł
description We prove several theorems concerning the connection between the local CR embeddability of 3-dimensional CR manifolds, and the existence of algebraically special Maxwell and gravitational fields. We reduce the Einstein equations for spacetimes associated with such fields to a system of CR invariant equations on a 3-dimensional CR manifold defined by the fields. Using the reduced Einstein equations we construct two independent CR functions for the corresponding CR manifold. We also point out that the Einstein equations, imposed on spacetimes associated with a 3-dimensional CR manifold, imply that the spacetime metric, after an appropriate rescaling, becomes well defined on a circle bundle over the CR manifold. The circle bundle itself emerges as a consequence of Einstein's equations.
doi_str_mv 10.1512/iumj.2008.57.3473
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1512_iumj_2008_57_3473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24903090</jstor_id><sourcerecordid>24903090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-1b892eee8f9d5856e6567c477006f2deb3bdd94d907772e184b6631ac88651243</originalsourceid><addsrcrecordid>eNpFkMtKxDAUhoMoOI4-gAshG3HVmvtlKWO9wIgg4zqkTaIZ2nRsOgvf3pYRXRz-xfm_A-cD4BKjEnNMbuO-25YEIVVyWVIm6RFYYM1owQlXx2CBECEF4VidgrOctwhRyalegPsqpjz6mG4yrL72dox9ytAmBzefHlZd7Z2L6QP2AdLCxc6nPDVsC1dv8MWmGPrW5XNwEmyb_cVvLsH7Q7VZPRXr18fn1d26aChDY4FrpYn3XgXtuOLCCy5kw6RESATifE1r5zRzGkkpiceK1UJQbBulxPQjo0uAD3eboc958MHshtjZ4dtgZGYNZtZgZg2GSzNrmJjrA7OzubFtGGxqYv4DCcZSTuTUuzr0tnnsh_8904iiaX4Ab_xmPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Einstein's Equations and The Embedding of 3-dimensional CR Manifolds</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Hill, C. Denson ; Lewandowski, Jerzy ; Nurowski, Paweł</creator><creatorcontrib>Hill, C. Denson ; Lewandowski, Jerzy ; Nurowski, Paweł</creatorcontrib><description>We prove several theorems concerning the connection between the local CR embeddability of 3-dimensional CR manifolds, and the existence of algebraically special Maxwell and gravitational fields. We reduce the Einstein equations for spacetimes associated with such fields to a system of CR invariant equations on a 3-dimensional CR manifold defined by the fields. Using the reduced Einstein equations we construct two independent CR functions for the corresponding CR manifold. We also point out that the Einstein equations, imposed on spacetimes associated with a 3-dimensional CR manifold, imply that the spacetime metric, after an appropriate rescaling, becomes well defined on a circle bundle over the CR manifold. The circle bundle itself emerges as a consequence of Einstein's equations.</description><identifier>ISSN: 0022-2518</identifier><identifier>EISSN: 1943-5258</identifier><identifier>DOI: 10.1512/iumj.2008.57.3473</identifier><identifier>CODEN: IUMJAB</identifier><language>eng</language><publisher>Bloomington, IN: Department of Mathematics of Indiana University</publisher><subject>Algebra ; Einstein equations ; Exact sciences and technology ; General mathematics ; General, history and biography ; Geodesy ; Manifolds and cell complexes ; Mathematical analysis ; Mathematical congruence ; Mathematical manifolds ; Mathematical theorems ; Mathematics ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Sciences and techniques of general use ; Several complex variables and analytic spaces ; Spacetime ; Tensors ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Vector fields</subject><ispartof>Indiana University mathematics journal, 2008-01, Vol.57 (7), p.3131-3176</ispartof><rights>2008 Department of Mathematics, Indiana University</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-1b892eee8f9d5856e6567c477006f2deb3bdd94d907772e184b6631ac88651243</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24903090$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24903090$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4023,27922,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21177512$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hill, C. Denson</creatorcontrib><creatorcontrib>Lewandowski, Jerzy</creatorcontrib><creatorcontrib>Nurowski, Paweł</creatorcontrib><title>Einstein's Equations and The Embedding of 3-dimensional CR Manifolds</title><title>Indiana University mathematics journal</title><description>We prove several theorems concerning the connection between the local CR embeddability of 3-dimensional CR manifolds, and the existence of algebraically special Maxwell and gravitational fields. We reduce the Einstein equations for spacetimes associated with such fields to a system of CR invariant equations on a 3-dimensional CR manifold defined by the fields. Using the reduced Einstein equations we construct two independent CR functions for the corresponding CR manifold. We also point out that the Einstein equations, imposed on spacetimes associated with a 3-dimensional CR manifold, imply that the spacetime metric, after an appropriate rescaling, becomes well defined on a circle bundle over the CR manifold. The circle bundle itself emerges as a consequence of Einstein's equations.</description><subject>Algebra</subject><subject>Einstein equations</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Geodesy</subject><subject>Manifolds and cell complexes</subject><subject>Mathematical analysis</subject><subject>Mathematical congruence</subject><subject>Mathematical manifolds</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Sciences and techniques of general use</subject><subject>Several complex variables and analytic spaces</subject><subject>Spacetime</subject><subject>Tensors</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Vector fields</subject><issn>0022-2518</issn><issn>1943-5258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkMtKxDAUhoMoOI4-gAshG3HVmvtlKWO9wIgg4zqkTaIZ2nRsOgvf3pYRXRz-xfm_A-cD4BKjEnNMbuO-25YEIVVyWVIm6RFYYM1owQlXx2CBECEF4VidgrOctwhRyalegPsqpjz6mG4yrL72dox9ytAmBzefHlZd7Z2L6QP2AdLCxc6nPDVsC1dv8MWmGPrW5XNwEmyb_cVvLsH7Q7VZPRXr18fn1d26aChDY4FrpYn3XgXtuOLCCy5kw6RESATifE1r5zRzGkkpiceK1UJQbBulxPQjo0uAD3eboc958MHshtjZ4dtgZGYNZtZgZg2GSzNrmJjrA7OzubFtGGxqYv4DCcZSTuTUuzr0tnnsh_8904iiaX4Ab_xmPQ</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Hill, C. Denson</creator><creator>Lewandowski, Jerzy</creator><creator>Nurowski, Paweł</creator><general>Department of Mathematics of Indiana University</general><general>Indiana University</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080101</creationdate><title>Einstein's Equations and The Embedding of 3-dimensional CR Manifolds</title><author>Hill, C. Denson ; Lewandowski, Jerzy ; Nurowski, Paweł</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-1b892eee8f9d5856e6567c477006f2deb3bdd94d907772e184b6631ac88651243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Einstein equations</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Geodesy</topic><topic>Manifolds and cell complexes</topic><topic>Mathematical analysis</topic><topic>Mathematical congruence</topic><topic>Mathematical manifolds</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Sciences and techniques of general use</topic><topic>Several complex variables and analytic spaces</topic><topic>Spacetime</topic><topic>Tensors</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Vector fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hill, C. Denson</creatorcontrib><creatorcontrib>Lewandowski, Jerzy</creatorcontrib><creatorcontrib>Nurowski, Paweł</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Indiana University mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hill, C. Denson</au><au>Lewandowski, Jerzy</au><au>Nurowski, Paweł</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Einstein's Equations and The Embedding of 3-dimensional CR Manifolds</atitle><jtitle>Indiana University mathematics journal</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>57</volume><issue>7</issue><spage>3131</spage><epage>3176</epage><pages>3131-3176</pages><issn>0022-2518</issn><eissn>1943-5258</eissn><coden>IUMJAB</coden><abstract>We prove several theorems concerning the connection between the local CR embeddability of 3-dimensional CR manifolds, and the existence of algebraically special Maxwell and gravitational fields. We reduce the Einstein equations for spacetimes associated with such fields to a system of CR invariant equations on a 3-dimensional CR manifold defined by the fields. Using the reduced Einstein equations we construct two independent CR functions for the corresponding CR manifold. We also point out that the Einstein equations, imposed on spacetimes associated with a 3-dimensional CR manifold, imply that the spacetime metric, after an appropriate rescaling, becomes well defined on a circle bundle over the CR manifold. The circle bundle itself emerges as a consequence of Einstein's equations.</abstract><cop>Bloomington, IN</cop><pub>Department of Mathematics of Indiana University</pub><doi>10.1512/iumj.2008.57.3473</doi><tpages>46</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2518
ispartof Indiana University mathematics journal, 2008-01, Vol.57 (7), p.3131-3176
issn 0022-2518
1943-5258
language eng
recordid cdi_crossref_primary_10_1512_iumj_2008_57_3473
source JSTOR Archival Journals and Primary Sources Collection
subjects Algebra
Einstein equations
Exact sciences and technology
General mathematics
General, history and biography
Geodesy
Manifolds and cell complexes
Mathematical analysis
Mathematical congruence
Mathematical manifolds
Mathematical theorems
Mathematics
Nonlinear algebraic and transcendental equations
Numerical analysis
Numerical analysis. Scientific computation
Sciences and techniques of general use
Several complex variables and analytic spaces
Spacetime
Tensors
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Vector fields
title Einstein's Equations and The Embedding of 3-dimensional CR Manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Einstein's%20Equations%20and%20The%20Embedding%20of%203-dimensional%20CR%20Manifolds&rft.jtitle=Indiana%20University%20mathematics%20journal&rft.au=Hill,%20C.%20Denson&rft.date=2008-01-01&rft.volume=57&rft.issue=7&rft.spage=3131&rft.epage=3176&rft.pages=3131-3176&rft.issn=0022-2518&rft.eissn=1943-5258&rft.coden=IUMJAB&rft_id=info:doi/10.1512/iumj.2008.57.3473&rft_dat=%3Cjstor_cross%3E24903090%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-1b892eee8f9d5856e6567c477006f2deb3bdd94d907772e184b6631ac88651243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24903090&rfr_iscdi=true