Loading…

Best Remainder Norms in Sobolev-Hardy Inequalities

We exhibit the optimal norm for a remainder term in the sharp Sobolev inequality involving a Lorentz norm, and in the equivalent classical Hardy inequality. Limiting cases of the relevant inequalities are also considered.

Saved in:
Bibliographic Details
Published in:Indiana University mathematics journal 2009-01, Vol.58 (3), p.1051-1096
Main Authors: Cianchi, Andrea, Ferone, Adele
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-be95f921d4784042254d038d875559e15c8bf85a7e9860c0920ab89aa9d7e7463
cites
container_end_page 1096
container_issue 3
container_start_page 1051
container_title Indiana University mathematics journal
container_volume 58
creator Cianchi, Andrea
Ferone, Adele
description We exhibit the optimal norm for a remainder term in the sharp Sobolev inequality involving a Lorentz norm, and in the equivalent classical Hardy inequality. Limiting cases of the relevant inequalities are also considered.
doi_str_mv 10.1512/iumj.2009.58.3561
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1512_iumj_2009_58_3561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24903243</jstor_id><sourcerecordid>24903243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-be95f921d4784042254d038d875559e15c8bf85a7e9860c0920ab89aa9d7e7463</originalsourceid><addsrcrecordid>eNpFj8tOwzAQRS0EEqXwASyQsmGZMB57ansJFdBKFUg81pGTOJKrPIqdIvXvaRQEq7uYe0b3MHbNIePE8c7v222GACYjnQla8BM240aKlJD0KZsBIKZIXJ-zixi3AEKRMDOGDy4OyZtrre8qF5KXPrQx8V3y3hd9477TlQ3VIVl37mtvGz94Fy_ZWW2b6K5-c84-nx4_lqt08_q8Xt5v0hKNGtLCGaoN8koqLUEikqxA6EorIjKOU6mLWpNVzugFlGAQbKGNtaZSTsmFmDM-_S1DH2Nwdb4LvrXhkHPIR-l8lM5H6Zx0PkofmduJ2dlY2qYOtit9_AOR6-MSBcfezdTbxqEP_3dpQKAU4gekzWA7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Best Remainder Norms in Sobolev-Hardy Inequalities</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Cianchi, Andrea ; Ferone, Adele</creator><creatorcontrib>Cianchi, Andrea ; Ferone, Adele</creatorcontrib><description>We exhibit the optimal norm for a remainder term in the sharp Sobolev inequality involving a Lorentz norm, and in the equivalent classical Hardy inequality. Limiting cases of the relevant inequalities are also considered.</description><identifier>ISSN: 0022-2518</identifier><identifier>EISSN: 1943-5258</identifier><identifier>DOI: 10.1512/iumj.2009.58.3561</identifier><identifier>CODEN: IUMJAB</identifier><language>eng</language><publisher>Bloomington, IN: Department of Mathematics of Indiana University</publisher><subject>Decreasing functions ; Embeddings ; Exact sciences and technology ; Fubinis theorem ; Function spaces ; General mathematics ; General, history and biography ; Integrable functions ; Mathematical constants ; Mathematical inequalities ; Mathematical theorems ; Mathematics ; Remainders ; Sciences and techniques of general use ; Sobolev spaces</subject><ispartof>Indiana University mathematics journal, 2009-01, Vol.58 (3), p.1051-1096</ispartof><rights>2009 Department of Mathematics, Indiana University</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-be95f921d4784042254d038d875559e15c8bf85a7e9860c0920ab89aa9d7e7463</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24903243$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24903243$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21804270$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cianchi, Andrea</creatorcontrib><creatorcontrib>Ferone, Adele</creatorcontrib><title>Best Remainder Norms in Sobolev-Hardy Inequalities</title><title>Indiana University mathematics journal</title><description>We exhibit the optimal norm for a remainder term in the sharp Sobolev inequality involving a Lorentz norm, and in the equivalent classical Hardy inequality. Limiting cases of the relevant inequalities are also considered.</description><subject>Decreasing functions</subject><subject>Embeddings</subject><subject>Exact sciences and technology</subject><subject>Fubinis theorem</subject><subject>Function spaces</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Integrable functions</subject><subject>Mathematical constants</subject><subject>Mathematical inequalities</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Remainders</subject><subject>Sciences and techniques of general use</subject><subject>Sobolev spaces</subject><issn>0022-2518</issn><issn>1943-5258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpFj8tOwzAQRS0EEqXwASyQsmGZMB57ansJFdBKFUg81pGTOJKrPIqdIvXvaRQEq7uYe0b3MHbNIePE8c7v222GACYjnQla8BM240aKlJD0KZsBIKZIXJ-zixi3AEKRMDOGDy4OyZtrre8qF5KXPrQx8V3y3hd9477TlQ3VIVl37mtvGz94Fy_ZWW2b6K5-c84-nx4_lqt08_q8Xt5v0hKNGtLCGaoN8koqLUEikqxA6EorIjKOU6mLWpNVzugFlGAQbKGNtaZSTsmFmDM-_S1DH2Nwdb4LvrXhkHPIR-l8lM5H6Zx0PkofmduJ2dlY2qYOtit9_AOR6-MSBcfezdTbxqEP_3dpQKAU4gekzWA7</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Cianchi, Andrea</creator><creator>Ferone, Adele</creator><general>Department of Mathematics of Indiana University</general><general>Indiana University</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090101</creationdate><title>Best Remainder Norms in Sobolev-Hardy Inequalities</title><author>Cianchi, Andrea ; Ferone, Adele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-be95f921d4784042254d038d875559e15c8bf85a7e9860c0920ab89aa9d7e7463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Decreasing functions</topic><topic>Embeddings</topic><topic>Exact sciences and technology</topic><topic>Fubinis theorem</topic><topic>Function spaces</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Integrable functions</topic><topic>Mathematical constants</topic><topic>Mathematical inequalities</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Remainders</topic><topic>Sciences and techniques of general use</topic><topic>Sobolev spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cianchi, Andrea</creatorcontrib><creatorcontrib>Ferone, Adele</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Indiana University mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cianchi, Andrea</au><au>Ferone, Adele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Best Remainder Norms in Sobolev-Hardy Inequalities</atitle><jtitle>Indiana University mathematics journal</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>58</volume><issue>3</issue><spage>1051</spage><epage>1096</epage><pages>1051-1096</pages><issn>0022-2518</issn><eissn>1943-5258</eissn><coden>IUMJAB</coden><abstract>We exhibit the optimal norm for a remainder term in the sharp Sobolev inequality involving a Lorentz norm, and in the equivalent classical Hardy inequality. Limiting cases of the relevant inequalities are also considered.</abstract><cop>Bloomington, IN</cop><pub>Department of Mathematics of Indiana University</pub><doi>10.1512/iumj.2009.58.3561</doi><tpages>46</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2518
ispartof Indiana University mathematics journal, 2009-01, Vol.58 (3), p.1051-1096
issn 0022-2518
1943-5258
language eng
recordid cdi_crossref_primary_10_1512_iumj_2009_58_3561
source JSTOR Archival Journals and Primary Sources Collection
subjects Decreasing functions
Embeddings
Exact sciences and technology
Fubinis theorem
Function spaces
General mathematics
General, history and biography
Integrable functions
Mathematical constants
Mathematical inequalities
Mathematical theorems
Mathematics
Remainders
Sciences and techniques of general use
Sobolev spaces
title Best Remainder Norms in Sobolev-Hardy Inequalities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Best%20Remainder%20Norms%20in%20Sobolev-Hardy%20Inequalities&rft.jtitle=Indiana%20University%20mathematics%20journal&rft.au=Cianchi,%20Andrea&rft.date=2009-01-01&rft.volume=58&rft.issue=3&rft.spage=1051&rft.epage=1096&rft.pages=1051-1096&rft.issn=0022-2518&rft.eissn=1943-5258&rft.coden=IUMJAB&rft_id=info:doi/10.1512/iumj.2009.58.3561&rft_dat=%3Cjstor_cross%3E24903243%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-be95f921d4784042254d038d875559e15c8bf85a7e9860c0920ab89aa9d7e7463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24903243&rfr_iscdi=true