Loading…
Best Remainder Norms in Sobolev-Hardy Inequalities
We exhibit the optimal norm for a remainder term in the sharp Sobolev inequality involving a Lorentz norm, and in the equivalent classical Hardy inequality. Limiting cases of the relevant inequalities are also considered.
Saved in:
Published in: | Indiana University mathematics journal 2009-01, Vol.58 (3), p.1051-1096 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c297t-be95f921d4784042254d038d875559e15c8bf85a7e9860c0920ab89aa9d7e7463 |
---|---|
cites | |
container_end_page | 1096 |
container_issue | 3 |
container_start_page | 1051 |
container_title | Indiana University mathematics journal |
container_volume | 58 |
creator | Cianchi, Andrea Ferone, Adele |
description | We exhibit the optimal norm for a remainder term in the sharp Sobolev inequality involving a Lorentz norm, and in the equivalent classical Hardy inequality. Limiting cases of the relevant inequalities are also considered. |
doi_str_mv | 10.1512/iumj.2009.58.3561 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1512_iumj_2009_58_3561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24903243</jstor_id><sourcerecordid>24903243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-be95f921d4784042254d038d875559e15c8bf85a7e9860c0920ab89aa9d7e7463</originalsourceid><addsrcrecordid>eNpFj8tOwzAQRS0EEqXwASyQsmGZMB57ansJFdBKFUg81pGTOJKrPIqdIvXvaRQEq7uYe0b3MHbNIePE8c7v222GACYjnQla8BM240aKlJD0KZsBIKZIXJ-zixi3AEKRMDOGDy4OyZtrre8qF5KXPrQx8V3y3hd9477TlQ3VIVl37mtvGz94Fy_ZWW2b6K5-c84-nx4_lqt08_q8Xt5v0hKNGtLCGaoN8koqLUEikqxA6EorIjKOU6mLWpNVzugFlGAQbKGNtaZSTsmFmDM-_S1DH2Nwdb4LvrXhkHPIR-l8lM5H6Zx0PkofmduJ2dlY2qYOtit9_AOR6-MSBcfezdTbxqEP_3dpQKAU4gekzWA7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Best Remainder Norms in Sobolev-Hardy Inequalities</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Cianchi, Andrea ; Ferone, Adele</creator><creatorcontrib>Cianchi, Andrea ; Ferone, Adele</creatorcontrib><description>We exhibit the optimal norm for a remainder term in the sharp Sobolev inequality involving a Lorentz norm, and in the equivalent classical Hardy inequality. Limiting cases of the relevant inequalities are also considered.</description><identifier>ISSN: 0022-2518</identifier><identifier>EISSN: 1943-5258</identifier><identifier>DOI: 10.1512/iumj.2009.58.3561</identifier><identifier>CODEN: IUMJAB</identifier><language>eng</language><publisher>Bloomington, IN: Department of Mathematics of Indiana University</publisher><subject>Decreasing functions ; Embeddings ; Exact sciences and technology ; Fubinis theorem ; Function spaces ; General mathematics ; General, history and biography ; Integrable functions ; Mathematical constants ; Mathematical inequalities ; Mathematical theorems ; Mathematics ; Remainders ; Sciences and techniques of general use ; Sobolev spaces</subject><ispartof>Indiana University mathematics journal, 2009-01, Vol.58 (3), p.1051-1096</ispartof><rights>2009 Department of Mathematics, Indiana University</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-be95f921d4784042254d038d875559e15c8bf85a7e9860c0920ab89aa9d7e7463</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24903243$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24903243$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21804270$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cianchi, Andrea</creatorcontrib><creatorcontrib>Ferone, Adele</creatorcontrib><title>Best Remainder Norms in Sobolev-Hardy Inequalities</title><title>Indiana University mathematics journal</title><description>We exhibit the optimal norm for a remainder term in the sharp Sobolev inequality involving a Lorentz norm, and in the equivalent classical Hardy inequality. Limiting cases of the relevant inequalities are also considered.</description><subject>Decreasing functions</subject><subject>Embeddings</subject><subject>Exact sciences and technology</subject><subject>Fubinis theorem</subject><subject>Function spaces</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Integrable functions</subject><subject>Mathematical constants</subject><subject>Mathematical inequalities</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Remainders</subject><subject>Sciences and techniques of general use</subject><subject>Sobolev spaces</subject><issn>0022-2518</issn><issn>1943-5258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpFj8tOwzAQRS0EEqXwASyQsmGZMB57ansJFdBKFUg81pGTOJKrPIqdIvXvaRQEq7uYe0b3MHbNIePE8c7v222GACYjnQla8BM240aKlJD0KZsBIKZIXJ-zixi3AEKRMDOGDy4OyZtrre8qF5KXPrQx8V3y3hd9477TlQ3VIVl37mtvGz94Fy_ZWW2b6K5-c84-nx4_lqt08_q8Xt5v0hKNGtLCGaoN8koqLUEikqxA6EorIjKOU6mLWpNVzugFlGAQbKGNtaZSTsmFmDM-_S1DH2Nwdb4LvrXhkHPIR-l8lM5H6Zx0PkofmduJ2dlY2qYOtit9_AOR6-MSBcfezdTbxqEP_3dpQKAU4gekzWA7</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Cianchi, Andrea</creator><creator>Ferone, Adele</creator><general>Department of Mathematics of Indiana University</general><general>Indiana University</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090101</creationdate><title>Best Remainder Norms in Sobolev-Hardy Inequalities</title><author>Cianchi, Andrea ; Ferone, Adele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-be95f921d4784042254d038d875559e15c8bf85a7e9860c0920ab89aa9d7e7463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Decreasing functions</topic><topic>Embeddings</topic><topic>Exact sciences and technology</topic><topic>Fubinis theorem</topic><topic>Function spaces</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Integrable functions</topic><topic>Mathematical constants</topic><topic>Mathematical inequalities</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Remainders</topic><topic>Sciences and techniques of general use</topic><topic>Sobolev spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cianchi, Andrea</creatorcontrib><creatorcontrib>Ferone, Adele</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Indiana University mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cianchi, Andrea</au><au>Ferone, Adele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Best Remainder Norms in Sobolev-Hardy Inequalities</atitle><jtitle>Indiana University mathematics journal</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>58</volume><issue>3</issue><spage>1051</spage><epage>1096</epage><pages>1051-1096</pages><issn>0022-2518</issn><eissn>1943-5258</eissn><coden>IUMJAB</coden><abstract>We exhibit the optimal norm for a remainder term in the sharp Sobolev inequality involving a Lorentz norm, and in the equivalent classical Hardy inequality. Limiting cases of the relevant inequalities are also considered.</abstract><cop>Bloomington, IN</cop><pub>Department of Mathematics of Indiana University</pub><doi>10.1512/iumj.2009.58.3561</doi><tpages>46</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2518 |
ispartof | Indiana University mathematics journal, 2009-01, Vol.58 (3), p.1051-1096 |
issn | 0022-2518 1943-5258 |
language | eng |
recordid | cdi_crossref_primary_10_1512_iumj_2009_58_3561 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Decreasing functions Embeddings Exact sciences and technology Fubinis theorem Function spaces General mathematics General, history and biography Integrable functions Mathematical constants Mathematical inequalities Mathematical theorems Mathematics Remainders Sciences and techniques of general use Sobolev spaces |
title | Best Remainder Norms in Sobolev-Hardy Inequalities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Best%20Remainder%20Norms%20in%20Sobolev-Hardy%20Inequalities&rft.jtitle=Indiana%20University%20mathematics%20journal&rft.au=Cianchi,%20Andrea&rft.date=2009-01-01&rft.volume=58&rft.issue=3&rft.spage=1051&rft.epage=1096&rft.pages=1051-1096&rft.issn=0022-2518&rft.eissn=1943-5258&rft.coden=IUMJAB&rft_id=info:doi/10.1512/iumj.2009.58.3561&rft_dat=%3Cjstor_cross%3E24903243%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-be95f921d4784042254d038d875559e15c8bf85a7e9860c0920ab89aa9d7e7463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24903243&rfr_iscdi=true |