Loading…
Pieri rules for the K-theory of cominuscule Grassmannians
We prove Pieri formulas for the multiplication with special Schubert classes in the K-theory of all cominuscule Grassmannians. For Grassmannians of type A this gives a new proof of a formula of Lenart. Our formula is new for Lagrangian Grassmannians, and for orthogonal Grassmannians it proves a spec...
Saved in:
Published in: | Journal für die reine und angewandte Mathematik 2012-07, Vol.2012 (668), p.109-132 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove Pieri formulas for the multiplication with special Schubert classes in the K-theory of all cominuscule Grassmannians. For Grassmannians of type A this gives a new proof of a formula of Lenart. Our formula is new for Lagrangian Grassmannians, and for orthogonal Grassmannians it proves a special case of a conjectural Littlewood–Richardson rule of Thomas and Yong. Recent work of Clifford, Thomas, and Yong has shown that the full Littlewood–Richardson rule for orthogonal Grassmannians follows from the Pieri case proved here. We describe the K-theoretic Pieri coefficients both as integers determined by positive recursive identities and as the number of certain tableaux. The proof is based on a computation of the sheaf Euler characteristic of triple intersections of Schubert varieties, where at least one Schubert variety is special. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/CRELLE.2011.135 |