Loading…

Canonical subgroups over Hilbert modular varieties

We obtain new results on the geometry of Hilbert modular varieties in positive characteristic and morphisms between them. Using these results and methods of rigid geometry, we develop a theory of canonical subgroups for abelian varieties with real multiplication.

Saved in:
Bibliographic Details
Published in:Journal für die reine und angewandte Mathematik 2012-09, Vol.2012 (670), p.1-63
Main Authors: Goren, Eyal Z., Kassaei, Payman L
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-f0ffc44617b3a8e0394722b1cd789487e2bd18d482b7087fbd66a76e2ee58c2f3
cites cdi_FETCH-LOGICAL-c376t-f0ffc44617b3a8e0394722b1cd789487e2bd18d482b7087fbd66a76e2ee58c2f3
container_end_page 63
container_issue 670
container_start_page 1
container_title Journal für die reine und angewandte Mathematik
container_volume 2012
creator Goren, Eyal Z.
Kassaei, Payman L
description We obtain new results on the geometry of Hilbert modular varieties in positive characteristic and morphisms between them. Using these results and methods of rigid geometry, we develop a theory of canonical subgroups for abelian varieties with real multiplication.
doi_str_mv 10.1515/CRELLE.2011.149
format article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_CRELLE_2011_149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_CRELLE_2011_14920126701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-f0ffc44617b3a8e0394722b1cd789487e2bd18d482b7087fbd66a76e2ee58c2f3</originalsourceid><addsrcrecordid>eNp1j0tPwkAUhSdGExFdu-0fKMydNytjGhCTxldwPZlpZ0ixUDLTIvx7S2rcuTp3c75zP4TuAU-AA59mH_M8n08IBpgAm12gETDKU04Zv0QjjCVPGWByjW5i3GCMOUgyQiQzu2ZXFaZOYmfXoen2MWkOLiTLqrYutMm2KbvahORgQuXaysVbdOVNHd3db47R52K-ypZp_vr0nD3maUGlaFOPvS8YEyAtNcphOmOSEAtFKdWMKemILUGVTBErsZLelkIYKRxxjquCeDpG04FbhCbG4Lzeh2prwkkD1mdlPSjrs7LulfvGw9D4NnXrQunWoTv1h940Xdj1v_7X7JMIiaEnpAOhiq07_g2a8KWFpJLr9xXTb0AWgucvWtAf0gJsjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Canonical subgroups over Hilbert modular varieties</title><source>De Gruyter journals</source><creator>Goren, Eyal Z. ; Kassaei, Payman L</creator><creatorcontrib>Goren, Eyal Z. ; Kassaei, Payman L</creatorcontrib><description>We obtain new results on the geometry of Hilbert modular varieties in positive characteristic and morphisms between them. Using these results and methods of rigid geometry, we develop a theory of canonical subgroups for abelian varieties with real multiplication.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/CRELLE.2011.149</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2012-09, Vol.2012 (670), p.1-63</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-f0ffc44617b3a8e0394722b1cd789487e2bd18d482b7087fbd66a76e2ee58c2f3</citedby><cites>FETCH-LOGICAL-c376t-f0ffc44617b3a8e0394722b1cd789487e2bd18d482b7087fbd66a76e2ee58c2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/CRELLE.2011.149/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/CRELLE.2011.149/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,66754,68538</link.rule.ids></links><search><creatorcontrib>Goren, Eyal Z.</creatorcontrib><creatorcontrib>Kassaei, Payman L</creatorcontrib><title>Canonical subgroups over Hilbert modular varieties</title><title>Journal für die reine und angewandte Mathematik</title><description>We obtain new results on the geometry of Hilbert modular varieties in positive characteristic and morphisms between them. Using these results and methods of rigid geometry, we develop a theory of canonical subgroups for abelian varieties with real multiplication.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1j0tPwkAUhSdGExFdu-0fKMydNytjGhCTxldwPZlpZ0ixUDLTIvx7S2rcuTp3c75zP4TuAU-AA59mH_M8n08IBpgAm12gETDKU04Zv0QjjCVPGWByjW5i3GCMOUgyQiQzu2ZXFaZOYmfXoen2MWkOLiTLqrYutMm2KbvahORgQuXaysVbdOVNHd3db47R52K-ypZp_vr0nD3maUGlaFOPvS8YEyAtNcphOmOSEAtFKdWMKemILUGVTBErsZLelkIYKRxxjquCeDpG04FbhCbG4Lzeh2prwkkD1mdlPSjrs7LulfvGw9D4NnXrQunWoTv1h940Xdj1v_7X7JMIiaEnpAOhiq07_g2a8KWFpJLr9xXTb0AWgucvWtAf0gJsjA</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Goren, Eyal Z.</creator><creator>Kassaei, Payman L</creator><general>De Gruyter</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120901</creationdate><title>Canonical subgroups over Hilbert modular varieties</title><author>Goren, Eyal Z. ; Kassaei, Payman L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-f0ffc44617b3a8e0394722b1cd789487e2bd18d482b7087fbd66a76e2ee58c2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goren, Eyal Z.</creatorcontrib><creatorcontrib>Kassaei, Payman L</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goren, Eyal Z.</au><au>Kassaei, Payman L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical subgroups over Hilbert modular varieties</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>2012</volume><issue>670</issue><spage>1</spage><epage>63</epage><pages>1-63</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>We obtain new results on the geometry of Hilbert modular varieties in positive characteristic and morphisms between them. Using these results and methods of rigid geometry, we develop a theory of canonical subgroups for abelian varieties with real multiplication.</abstract><pub>De Gruyter</pub><doi>10.1515/CRELLE.2011.149</doi><tpages>63</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0075-4102
ispartof Journal für die reine und angewandte Mathematik, 2012-09, Vol.2012 (670), p.1-63
issn 0075-4102
1435-5345
language eng
recordid cdi_crossref_primary_10_1515_CRELLE_2011_149
source De Gruyter journals
title Canonical subgroups over Hilbert modular varieties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20subgroups%20over%20Hilbert%20modular%20varieties&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Goren,%20Eyal%20Z.&rft.date=2012-09-01&rft.volume=2012&rft.issue=670&rft.spage=1&rft.epage=63&rft.pages=1-63&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/CRELLE.2011.149&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_CRELLE_2011_14920126701%3C/walterdegruyter_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-f0ffc44617b3a8e0394722b1cd789487e2bd18d482b7087fbd66a76e2ee58c2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true