Loading…
Canonical subgroups over Hilbert modular varieties
We obtain new results on the geometry of Hilbert modular varieties in positive characteristic and morphisms between them. Using these results and methods of rigid geometry, we develop a theory of canonical subgroups for abelian varieties with real multiplication.
Saved in:
Published in: | Journal für die reine und angewandte Mathematik 2012-09, Vol.2012 (670), p.1-63 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c376t-f0ffc44617b3a8e0394722b1cd789487e2bd18d482b7087fbd66a76e2ee58c2f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c376t-f0ffc44617b3a8e0394722b1cd789487e2bd18d482b7087fbd66a76e2ee58c2f3 |
container_end_page | 63 |
container_issue | 670 |
container_start_page | 1 |
container_title | Journal für die reine und angewandte Mathematik |
container_volume | 2012 |
creator | Goren, Eyal Z. Kassaei, Payman L |
description | We obtain new results on the geometry of Hilbert modular varieties in positive characteristic and morphisms between them. Using these results and methods of rigid geometry, we develop a theory of canonical subgroups for abelian varieties with real multiplication. |
doi_str_mv | 10.1515/CRELLE.2011.149 |
format | article |
fullrecord | <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_CRELLE_2011_149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_CRELLE_2011_14920126701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-f0ffc44617b3a8e0394722b1cd789487e2bd18d482b7087fbd66a76e2ee58c2f3</originalsourceid><addsrcrecordid>eNp1j0tPwkAUhSdGExFdu-0fKMydNytjGhCTxldwPZlpZ0ixUDLTIvx7S2rcuTp3c75zP4TuAU-AA59mH_M8n08IBpgAm12gETDKU04Zv0QjjCVPGWByjW5i3GCMOUgyQiQzu2ZXFaZOYmfXoen2MWkOLiTLqrYutMm2KbvahORgQuXaysVbdOVNHd3db47R52K-ypZp_vr0nD3maUGlaFOPvS8YEyAtNcphOmOSEAtFKdWMKemILUGVTBErsZLelkIYKRxxjquCeDpG04FbhCbG4Lzeh2prwkkD1mdlPSjrs7LulfvGw9D4NnXrQunWoTv1h940Xdj1v_7X7JMIiaEnpAOhiq07_g2a8KWFpJLr9xXTb0AWgucvWtAf0gJsjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Canonical subgroups over Hilbert modular varieties</title><source>De Gruyter journals</source><creator>Goren, Eyal Z. ; Kassaei, Payman L</creator><creatorcontrib>Goren, Eyal Z. ; Kassaei, Payman L</creatorcontrib><description>We obtain new results on the geometry of Hilbert modular varieties in positive characteristic and morphisms between them. Using these results and methods of rigid geometry, we develop a theory of canonical subgroups for abelian varieties with real multiplication.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/CRELLE.2011.149</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2012-09, Vol.2012 (670), p.1-63</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-f0ffc44617b3a8e0394722b1cd789487e2bd18d482b7087fbd66a76e2ee58c2f3</citedby><cites>FETCH-LOGICAL-c376t-f0ffc44617b3a8e0394722b1cd789487e2bd18d482b7087fbd66a76e2ee58c2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/CRELLE.2011.149/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/CRELLE.2011.149/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,66754,68538</link.rule.ids></links><search><creatorcontrib>Goren, Eyal Z.</creatorcontrib><creatorcontrib>Kassaei, Payman L</creatorcontrib><title>Canonical subgroups over Hilbert modular varieties</title><title>Journal für die reine und angewandte Mathematik</title><description>We obtain new results on the geometry of Hilbert modular varieties in positive characteristic and morphisms between them. Using these results and methods of rigid geometry, we develop a theory of canonical subgroups for abelian varieties with real multiplication.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1j0tPwkAUhSdGExFdu-0fKMydNytjGhCTxldwPZlpZ0ixUDLTIvx7S2rcuTp3c75zP4TuAU-AA59mH_M8n08IBpgAm12gETDKU04Zv0QjjCVPGWByjW5i3GCMOUgyQiQzu2ZXFaZOYmfXoen2MWkOLiTLqrYutMm2KbvahORgQuXaysVbdOVNHd3db47R52K-ypZp_vr0nD3maUGlaFOPvS8YEyAtNcphOmOSEAtFKdWMKemILUGVTBErsZLelkIYKRxxjquCeDpG04FbhCbG4Lzeh2prwkkD1mdlPSjrs7LulfvGw9D4NnXrQunWoTv1h940Xdj1v_7X7JMIiaEnpAOhiq07_g2a8KWFpJLr9xXTb0AWgucvWtAf0gJsjA</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Goren, Eyal Z.</creator><creator>Kassaei, Payman L</creator><general>De Gruyter</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120901</creationdate><title>Canonical subgroups over Hilbert modular varieties</title><author>Goren, Eyal Z. ; Kassaei, Payman L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-f0ffc44617b3a8e0394722b1cd789487e2bd18d482b7087fbd66a76e2ee58c2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goren, Eyal Z.</creatorcontrib><creatorcontrib>Kassaei, Payman L</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goren, Eyal Z.</au><au>Kassaei, Payman L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical subgroups over Hilbert modular varieties</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>2012</volume><issue>670</issue><spage>1</spage><epage>63</epage><pages>1-63</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>We obtain new results on the geometry of Hilbert modular varieties in positive characteristic and morphisms between them. Using these results and methods of rigid geometry, we develop a theory of canonical subgroups for abelian varieties with real multiplication.</abstract><pub>De Gruyter</pub><doi>10.1515/CRELLE.2011.149</doi><tpages>63</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0075-4102 |
ispartof | Journal für die reine und angewandte Mathematik, 2012-09, Vol.2012 (670), p.1-63 |
issn | 0075-4102 1435-5345 |
language | eng |
recordid | cdi_crossref_primary_10_1515_CRELLE_2011_149 |
source | De Gruyter journals |
title | Canonical subgroups over Hilbert modular varieties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20subgroups%20over%20Hilbert%20modular%20varieties&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Goren,%20Eyal%20Z.&rft.date=2012-09-01&rft.volume=2012&rft.issue=670&rft.spage=1&rft.epage=63&rft.pages=1-63&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/CRELLE.2011.149&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_CRELLE_2011_14920126701%3C/walterdegruyter_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-f0ffc44617b3a8e0394722b1cd789487e2bd18d482b7087fbd66a76e2ee58c2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |