Loading…

Backward Blow-up Estimates and Initial Trace for a Parabolic System of Reaction-Diffusion

In this article we study the positive solutions of the parabolic semilinear system of competitive type in Ω × (0, T), where Ω is a domain of ℝ , and p,q > 0, pq ≠ 1, Despite of the lack of comparison principles, we prove local upper estimates in the superlinear case pq > 1 of the form u(x, t)...

Full description

Saved in:
Bibliographic Details
Published in:Advanced nonlinear studies 2010-08, Vol.10 (3), p.707-728
Main Authors: Bidaut-Véron, Marie-Françoise, García-Huidobro, Marta, Yarur, Cecilia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c284t-20252d5803f191936b8aa47f90ebfc9c6d3bcb082aec6deebbc2cd877349b9a33
container_end_page 728
container_issue 3
container_start_page 707
container_title Advanced nonlinear studies
container_volume 10
creator Bidaut-Véron, Marie-Françoise
García-Huidobro, Marta
Yarur, Cecilia
description In this article we study the positive solutions of the parabolic semilinear system of competitive type in Ω × (0, T), where Ω is a domain of ℝ , and p,q > 0, pq ≠ 1, Despite of the lack of comparison principles, we prove local upper estimates in the superlinear case pq > 1 of the form u(x, t) ≦ Ct , v(x, t) ≦ Ct in ω × (0, T ), for any domain ω ⊂⊂ Ω, T ∈ (0, T), and C = C(N, p, q, T , ω). For p, q > 1, we prove the existence of an initial trace at time 0, which is a Borel measure on Ω. Finally we prove that the punctual singularities at time 0 are removable when p, q ≧ 1 + 2/N.
doi_str_mv 10.1515/ans-2010-0310
format article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_ans_2010_0310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_ans_2010_0310103707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-20252d5803f191936b8aa47f90ebfc9c6d3bcb082aec6deebbc2cd877349b9a33</originalsourceid><addsrcrecordid>eNptkM1OwzAQhC0EEhX0yN0vYPBPnMTiREuBSpVAUA6crLVjo5Q0qWxHVd8eV-XIXnYOM6vZD6EbRm-ZZPIO-kg4ZZRQwegZmnBWqqwreY4mTIqSMFHKSzSNcUPzFIoXUk7Q1wzszx5Cg2fdsCfjDi9iareQXMTQN3jZt6mFDq8DWIf9EDDgNwhghq61-OMQk9viweN3Bza1Q08eW-_HmNU1uvDQRTf921fo82mxnr-Q1evzcv6wIpbXRcqdueSNrKnwTDElSlMDFJVX1BlvlS0bYayhNQeXtXPGWG6buqpEoYwCIa4QOd21YYgxOK93IT8QDppRfUSjMxp9RKOPaLL__uTfQ5dcaNx3GA9Z6M0whj43_T-XkxWtxC8H92ro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Backward Blow-up Estimates and Initial Trace for a Parabolic System of Reaction-Diffusion</title><source>Alma/SFX Local Collection</source><creator>Bidaut-Véron, Marie-Françoise ; García-Huidobro, Marta ; Yarur, Cecilia</creator><creatorcontrib>Bidaut-Véron, Marie-Françoise ; García-Huidobro, Marta ; Yarur, Cecilia</creatorcontrib><description>In this article we study the positive solutions of the parabolic semilinear system of competitive type in Ω × (0, T), where Ω is a domain of ℝ , and p,q &gt; 0, pq ≠ 1, Despite of the lack of comparison principles, we prove local upper estimates in the superlinear case pq &gt; 1 of the form u(x, t) ≦ Ct , v(x, t) ≦ Ct in ω × (0, T ), for any domain ω ⊂⊂ Ω, T ∈ (0, T), and C = C(N, p, q, T , ω). For p, q &gt; 1, we prove the existence of an initial trace at time 0, which is a Borel measure on Ω. Finally we prove that the punctual singularities at time 0 are removable when p, q ≧ 1 + 2/N.</description><identifier>ISSN: 1536-1365</identifier><identifier>EISSN: 2169-0375</identifier><identifier>DOI: 10.1515/ans-2010-0310</identifier><language>eng</language><publisher>Advanced Nonlinear Studies, Inc</publisher><subject>backward estimates ; competitive systems ; initial trace ; Parabolic semilinear systems of reaction-diffusion ; singularities</subject><ispartof>Advanced nonlinear studies, 2010-08, Vol.10 (3), p.707-728</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c284t-20252d5803f191936b8aa47f90ebfc9c6d3bcb082aec6deebbc2cd877349b9a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bidaut-Véron, Marie-Françoise</creatorcontrib><creatorcontrib>García-Huidobro, Marta</creatorcontrib><creatorcontrib>Yarur, Cecilia</creatorcontrib><title>Backward Blow-up Estimates and Initial Trace for a Parabolic System of Reaction-Diffusion</title><title>Advanced nonlinear studies</title><description>In this article we study the positive solutions of the parabolic semilinear system of competitive type in Ω × (0, T), where Ω is a domain of ℝ , and p,q &gt; 0, pq ≠ 1, Despite of the lack of comparison principles, we prove local upper estimates in the superlinear case pq &gt; 1 of the form u(x, t) ≦ Ct , v(x, t) ≦ Ct in ω × (0, T ), for any domain ω ⊂⊂ Ω, T ∈ (0, T), and C = C(N, p, q, T , ω). For p, q &gt; 1, we prove the existence of an initial trace at time 0, which is a Borel measure on Ω. Finally we prove that the punctual singularities at time 0 are removable when p, q ≧ 1 + 2/N.</description><subject>backward estimates</subject><subject>competitive systems</subject><subject>initial trace</subject><subject>Parabolic semilinear systems of reaction-diffusion</subject><subject>singularities</subject><issn>1536-1365</issn><issn>2169-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkM1OwzAQhC0EEhX0yN0vYPBPnMTiREuBSpVAUA6crLVjo5Q0qWxHVd8eV-XIXnYOM6vZD6EbRm-ZZPIO-kg4ZZRQwegZmnBWqqwreY4mTIqSMFHKSzSNcUPzFIoXUk7Q1wzszx5Cg2fdsCfjDi9iareQXMTQN3jZt6mFDq8DWIf9EDDgNwhghq61-OMQk9viweN3Bza1Q08eW-_HmNU1uvDQRTf921fo82mxnr-Q1evzcv6wIpbXRcqdueSNrKnwTDElSlMDFJVX1BlvlS0bYayhNQeXtXPGWG6buqpEoYwCIa4QOd21YYgxOK93IT8QDppRfUSjMxp9RKOPaLL__uTfQ5dcaNx3GA9Z6M0whj43_T-XkxWtxC8H92ro</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Bidaut-Véron, Marie-Françoise</creator><creator>García-Huidobro, Marta</creator><creator>Yarur, Cecilia</creator><general>Advanced Nonlinear Studies, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100801</creationdate><title>Backward Blow-up Estimates and Initial Trace for a Parabolic System of Reaction-Diffusion</title><author>Bidaut-Véron, Marie-Françoise ; García-Huidobro, Marta ; Yarur, Cecilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-20252d5803f191936b8aa47f90ebfc9c6d3bcb082aec6deebbc2cd877349b9a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>backward estimates</topic><topic>competitive systems</topic><topic>initial trace</topic><topic>Parabolic semilinear systems of reaction-diffusion</topic><topic>singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bidaut-Véron, Marie-Françoise</creatorcontrib><creatorcontrib>García-Huidobro, Marta</creatorcontrib><creatorcontrib>Yarur, Cecilia</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced nonlinear studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bidaut-Véron, Marie-Françoise</au><au>García-Huidobro, Marta</au><au>Yarur, Cecilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backward Blow-up Estimates and Initial Trace for a Parabolic System of Reaction-Diffusion</atitle><jtitle>Advanced nonlinear studies</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>10</volume><issue>3</issue><spage>707</spage><epage>728</epage><pages>707-728</pages><issn>1536-1365</issn><eissn>2169-0375</eissn><abstract>In this article we study the positive solutions of the parabolic semilinear system of competitive type in Ω × (0, T), where Ω is a domain of ℝ , and p,q &gt; 0, pq ≠ 1, Despite of the lack of comparison principles, we prove local upper estimates in the superlinear case pq &gt; 1 of the form u(x, t) ≦ Ct , v(x, t) ≦ Ct in ω × (0, T ), for any domain ω ⊂⊂ Ω, T ∈ (0, T), and C = C(N, p, q, T , ω). For p, q &gt; 1, we prove the existence of an initial trace at time 0, which is a Borel measure on Ω. Finally we prove that the punctual singularities at time 0 are removable when p, q ≧ 1 + 2/N.</abstract><pub>Advanced Nonlinear Studies, Inc</pub><doi>10.1515/ans-2010-0310</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1536-1365
ispartof Advanced nonlinear studies, 2010-08, Vol.10 (3), p.707-728
issn 1536-1365
2169-0375
language eng
recordid cdi_crossref_primary_10_1515_ans_2010_0310
source Alma/SFX Local Collection
subjects backward estimates
competitive systems
initial trace
Parabolic semilinear systems of reaction-diffusion
singularities
title Backward Blow-up Estimates and Initial Trace for a Parabolic System of Reaction-Diffusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backward%20Blow-up%20Estimates%20and%20Initial%20Trace%20for%20a%20Parabolic%20System%20of%20Reaction-Diffusion&rft.jtitle=Advanced%20nonlinear%20studies&rft.au=Bidaut-V%C3%A9ron,%20Marie-Fran%C3%A7oise&rft.date=2010-08-01&rft.volume=10&rft.issue=3&rft.spage=707&rft.epage=728&rft.pages=707-728&rft.issn=1536-1365&rft.eissn=2169-0375&rft_id=info:doi/10.1515/ans-2010-0310&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_ans_2010_0310103707%3C/walterdegruyter_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-20252d5803f191936b8aa47f90ebfc9c6d3bcb082aec6deebbc2cd877349b9a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true