Loading…

Remarks on Existence of Large Solutions for p-Laplacian Equations with Strongly Nonlinear Terms Satisfying the Keller-Osserman Condition

We deal with existence of large solutions of ∆ u = a(x)f(u)+b(x)g(u) in ℝ . It is shown that if a, b, f, g are non-negative real valued functions with a, b ∈ C(ℝ ), f, g ∈ C([0,∞)) and f + g ≥ h where h is a continuous, non-negative, non- decreasing function satisfying the Keller-Osserman condition...

Full description

Saved in:
Bibliographic Details
Published in:Advanced nonlinear studies 2010-11, Vol.10 (4), p.757-769
Main Authors: Goncalves, J. V. A., Zhou, Jiazheng
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c289t-9eaacf5d45a6e5d683438dd66c642b56b03d0a47da86af18e35730b0cfd00faa3
cites
container_end_page 769
container_issue 4
container_start_page 757
container_title Advanced nonlinear studies
container_volume 10
creator Goncalves, J. V. A.
Zhou, Jiazheng
description We deal with existence of large solutions of ∆ u = a(x)f(u)+b(x)g(u) in ℝ . It is shown that if a, b, f, g are non-negative real valued functions with a, b ∈ C(ℝ ), f, g ∈ C([0,∞)) and f + g ≥ h where h is a continuous, non-negative, non- decreasing function satisfying the Keller-Osserman condition then the equation above admits a large solution if the equation -∆ v = a(x) + b(x) in ℝ has a positive upper solution decaying to zero at infinity. No monotonicity condition is required from either f or g. Our proof is based on the method of lower and upper-solutions. We extend recent results by A. V. Lair and A. Mohammed.
doi_str_mv 10.1515/ans-2010-0402
format article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1515_ans_2010_0402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_ans_2010_0402104757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-9eaacf5d45a6e5d683438dd66c642b56b03d0a47da86af18e35730b0cfd00faa3</originalsourceid><addsrcrecordid>eNptkE1OwzAQhS0EElXpkr0vYLDj2EnEClXlR0RUomUdTWM7TUntYqeC3IBj46gsmc2M9N68GX0IXTN6wwQTt2ADSSijhKY0OUOThMmCUJ6JczRhgkvCuBSXaBbCjsZKiyQVYoJ-3vQe_EfAzuLFdxt6bWuNncEl-EbjleuOfetswMZ5fCAlHDqoW4jmzyOclK-23-JV751tugG_Otu1VoPHa-33Aa-iK5ihtQ3utxq_6K7TnixDiGqMmTur2jHnCl0Y6IKe_fUpen9YrOdPpFw-Ps_vS1InedGTQgPURqhUgNRCyZynPFdKylqmyUbIDeWKQpopyCUYlmsuMk43tDaKUgPAp4iccmvvQvDaVAffRgRDxWg1kqwiyWokWY0ko__u5P-Crtde6cYfhzhUO3f0Nn76_x6jaRYv_wLSxn16</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Remarks on Existence of Large Solutions for p-Laplacian Equations with Strongly Nonlinear Terms Satisfying the Keller-Osserman Condition</title><source>Alma/SFX Local Collection</source><creator>Goncalves, J. V. A. ; Zhou, Jiazheng</creator><creatorcontrib>Goncalves, J. V. A. ; Zhou, Jiazheng</creatorcontrib><description>We deal with existence of large solutions of ∆ u = a(x)f(u)+b(x)g(u) in ℝ . It is shown that if a, b, f, g are non-negative real valued functions with a, b ∈ C(ℝ ), f, g ∈ C([0,∞)) and f + g ≥ h where h is a continuous, non-negative, non- decreasing function satisfying the Keller-Osserman condition then the equation above admits a large solution if the equation -∆ v = a(x) + b(x) in ℝ has a positive upper solution decaying to zero at infinity. No monotonicity condition is required from either f or g. Our proof is based on the method of lower and upper-solutions. We extend recent results by A. V. Lair and A. Mohammed.</description><identifier>ISSN: 1536-1365</identifier><identifier>EISSN: 2169-0375</identifier><identifier>DOI: 10.1515/ans-2010-0402</identifier><language>eng</language><publisher>Advanced Nonlinear Studies, Inc</publisher><subject>Keller-Osserman condition ; large solutions ; quasilinear equations</subject><ispartof>Advanced nonlinear studies, 2010-11, Vol.10 (4), p.757-769</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-9eaacf5d45a6e5d683438dd66c642b56b03d0a47da86af18e35730b0cfd00faa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Goncalves, J. V. A.</creatorcontrib><creatorcontrib>Zhou, Jiazheng</creatorcontrib><title>Remarks on Existence of Large Solutions for p-Laplacian Equations with Strongly Nonlinear Terms Satisfying the Keller-Osserman Condition</title><title>Advanced nonlinear studies</title><description>We deal with existence of large solutions of ∆ u = a(x)f(u)+b(x)g(u) in ℝ . It is shown that if a, b, f, g are non-negative real valued functions with a, b ∈ C(ℝ ), f, g ∈ C([0,∞)) and f + g ≥ h where h is a continuous, non-negative, non- decreasing function satisfying the Keller-Osserman condition then the equation above admits a large solution if the equation -∆ v = a(x) + b(x) in ℝ has a positive upper solution decaying to zero at infinity. No monotonicity condition is required from either f or g. Our proof is based on the method of lower and upper-solutions. We extend recent results by A. V. Lair and A. Mohammed.</description><subject>Keller-Osserman condition</subject><subject>large solutions</subject><subject>quasilinear equations</subject><issn>1536-1365</issn><issn>2169-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkE1OwzAQhS0EElXpkr0vYLDj2EnEClXlR0RUomUdTWM7TUntYqeC3IBj46gsmc2M9N68GX0IXTN6wwQTt2ADSSijhKY0OUOThMmCUJ6JczRhgkvCuBSXaBbCjsZKiyQVYoJ-3vQe_EfAzuLFdxt6bWuNncEl-EbjleuOfetswMZ5fCAlHDqoW4jmzyOclK-23-JV751tugG_Otu1VoPHa-33Aa-iK5ihtQ3utxq_6K7TnixDiGqMmTur2jHnCl0Y6IKe_fUpen9YrOdPpFw-Ps_vS1InedGTQgPURqhUgNRCyZynPFdKylqmyUbIDeWKQpopyCUYlmsuMk43tDaKUgPAp4iccmvvQvDaVAffRgRDxWg1kqwiyWokWY0ko__u5P-Crtde6cYfhzhUO3f0Nn76_x6jaRYv_wLSxn16</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Goncalves, J. V. A.</creator><creator>Zhou, Jiazheng</creator><general>Advanced Nonlinear Studies, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20101101</creationdate><title>Remarks on Existence of Large Solutions for p-Laplacian Equations with Strongly Nonlinear Terms Satisfying the Keller-Osserman Condition</title><author>Goncalves, J. V. A. ; Zhou, Jiazheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-9eaacf5d45a6e5d683438dd66c642b56b03d0a47da86af18e35730b0cfd00faa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Keller-Osserman condition</topic><topic>large solutions</topic><topic>quasilinear equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goncalves, J. V. A.</creatorcontrib><creatorcontrib>Zhou, Jiazheng</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced nonlinear studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goncalves, J. V. A.</au><au>Zhou, Jiazheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remarks on Existence of Large Solutions for p-Laplacian Equations with Strongly Nonlinear Terms Satisfying the Keller-Osserman Condition</atitle><jtitle>Advanced nonlinear studies</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>10</volume><issue>4</issue><spage>757</spage><epage>769</epage><pages>757-769</pages><issn>1536-1365</issn><eissn>2169-0375</eissn><abstract>We deal with existence of large solutions of ∆ u = a(x)f(u)+b(x)g(u) in ℝ . It is shown that if a, b, f, g are non-negative real valued functions with a, b ∈ C(ℝ ), f, g ∈ C([0,∞)) and f + g ≥ h where h is a continuous, non-negative, non- decreasing function satisfying the Keller-Osserman condition then the equation above admits a large solution if the equation -∆ v = a(x) + b(x) in ℝ has a positive upper solution decaying to zero at infinity. No monotonicity condition is required from either f or g. Our proof is based on the method of lower and upper-solutions. We extend recent results by A. V. Lair and A. Mohammed.</abstract><pub>Advanced Nonlinear Studies, Inc</pub><doi>10.1515/ans-2010-0402</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1536-1365
ispartof Advanced nonlinear studies, 2010-11, Vol.10 (4), p.757-769
issn 1536-1365
2169-0375
language eng
recordid cdi_crossref_primary_10_1515_ans_2010_0402
source Alma/SFX Local Collection
subjects Keller-Osserman condition
large solutions
quasilinear equations
title Remarks on Existence of Large Solutions for p-Laplacian Equations with Strongly Nonlinear Terms Satisfying the Keller-Osserman Condition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remarks%20on%20Existence%20of%20Large%20Solutions%20for%20p-Laplacian%20Equations%20with%20Strongly%20Nonlinear%20Terms%20Satisfying%20the%20Keller-Osserman%20Condition&rft.jtitle=Advanced%20nonlinear%20studies&rft.au=Goncalves,%20J.%20V.%20A.&rft.date=2010-11-01&rft.volume=10&rft.issue=4&rft.spage=757&rft.epage=769&rft.pages=757-769&rft.issn=1536-1365&rft.eissn=2169-0375&rft_id=info:doi/10.1515/ans-2010-0402&rft_dat=%3Cwalterdegruyter_cross%3E10_1515_ans_2010_0402104757%3C/walterdegruyter_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-9eaacf5d45a6e5d683438dd66c642b56b03d0a47da86af18e35730b0cfd00faa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true