Loading…
Optimization of Process Parameters of Epoxy Granite for Strength and Damping Characteristics Using TOPSIS Method
The main requirements for machine tool structures are higher damping, stiffness, and dimensional stability and low thermal expansion coefficient. Compared with cast iron (CI), stone-based polymer composite provides improved damping characteristics, because of which it is being considered as an alter...
Saved in:
Published in: | Journal of testing and evaluation 2021-05, Vol.49 (3), p.1956-1975 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The main requirements for machine tool structures are higher damping, stiffness, and dimensional stability and low thermal expansion coefficient. Compared with cast iron (CI), stone-based polymer composite provides improved damping characteristics, because of which it is being considered as an alternate material for machine tool structures in recent research. In this work, process parameters of epoxy granite (EG) composite were optimized using the technique for order preference by similarity to ideal solution (TOPSIS) method to obtain optimum strength characteristics. The effect of process parameters, namely curing time (A), aggregate mass fraction (B), aggregate size mix (C), curing temperature (D), and stirring speed (E) on static and dynamic characteristics of EG composite were investigated. An analysis of variance test was performed to identify the significant process parameters with a confidence level of 95 %. The predicted process parameters are verified through confirmatory tests, which showed an improved preference value of 0.0948. To obtain optimum strength properties, the recommended optimum process parameters are found to be A = 12 h, B = 0.8, C = aggregate size mix 1, D = 40°C, and E = 90 r/min. Experimental modal analysis also revealed that the damping factor of EG composite with aggregate mass fraction B = 0.8 is 10 times higher than that of CI. Morphological analysis of EG composite using a field emission scanning electron microscope showed that granite aggregates are uniformly distributed with better epoxy bonding characteristics. |
---|---|
ISSN: | 0090-3973 1945-7553 |
DOI: | 10.1520/JTE20190002 |