Loading…
Noise Suppression and Contrast Enhancement via Bayesian Residual Transform (BRT) in Low-Light Conditions
Very low-light conditions are problematic for current robotic visionalgorithms as captured images are subject to high levels of ISOnoise. We propose a Bayesian Residual Transform (BRT) model forjoint noise suppression and image enhancement for images capturedunder these low-light conditions via a Ba...
Saved in:
Published in: | Journal of Computational Vision and Imaging Systems 2016-10, Vol.2 (1) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Very low-light conditions are problematic for current robotic visionalgorithms as captured images are subject to high levels of ISOnoise. We propose a Bayesian Residual Transform (BRT) model forjoint noise suppression and image enhancement for images capturedunder these low-light conditions via a Bayesian-based multiscaleimage decomposition. The BRT models a given image as thesum of residual images, and the denoised image is reconstructedusing a weighted summation of these residual images. We evaluatethe efficacy of the proposed BRT model using the VIP-LowLightdataset, and preliminary results show a notable visual improvementover state-of-the-art denoising methods. |
---|---|
ISSN: | 2562-0444 2562-0444 |
DOI: | 10.15353/vsnl.v2i1.110 |