Loading…
Computational Fluid Dynamics and Aortic Dissections: Panacea or Panic?
This paper reviews the methodology, benefits and limitations associated with computational flow dynamics (CFD) in the field of vascular surgery. Combined with traditional imaging of the vasculature, CFD simulation enables accurate characterisation of real-time physiological and haemodynamic paramete...
Saved in:
Published in: | Vascular and endovascular review 2018-09, Vol.1 (1), p.27-29 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper reviews the methodology, benefits and limitations associated with computational flow dynamics (CFD) in the field of vascular surgery. Combined with traditional imaging of the vasculature, CFD simulation enables accurate characterisation of real-time physiological and haemodynamic parameters such as wall shear stress. This enables vascular surgeons to understand haemodynamic changes in true and false lumens, and exit and re-entry tears. This crucial information may facilitate triaging decisions. Furthermore, CFD can be used to assess the impact of stent graft treatment, as it provides a haemodynamic account of what may cause procedure-related complications. Efforts to integrate conventional imaging, individual patient data and CFD are paramount to its success, given its potential to replace traditional registry-based, population-averaged data. Nonetheless, methodological limitations must be addressed before clinical implementation. This must be accompanied by further research with large sample sizes, to establish the association between haemodynamic patterns as observed by CFD and progression of aortic dissection. |
---|---|
ISSN: | 2516-3299 2516-3302 |
DOI: | 10.15420/ver.2018.8.2 |