Loading…

Theoretical phase diagrams of nanowires

Systems with typical dimensions in the range of 1–100 nm are in an intermediate state between solid and molecular. Such systems are characterized by the fact that the ratio of the number of surface to volume atoms is not small. This is known to lead to size and shape effects on their cohesive proper...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2006-11, Vol.21 (11), p.2829-2834
Main Authors: Abudukelimu, G., Guisbiers, G., Wautelet, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Systems with typical dimensions in the range of 1–100 nm are in an intermediate state between solid and molecular. Such systems are characterized by the fact that the ratio of the number of surface to volume atoms is not small. This is known to lead to size and shape effects on their cohesive properties. In this work, the phase diagram of nanowires was studied in the framework of classical thermodynamics. The roles of the size, shape, and surface tensions were emphasized. The melting temperatures of nanowires of 21 elements were evaluated theoretically. In the case of binary systems, it was shown that the experimental or theoretical knowledge of the size-dependent phase diagrams of a given binary system allows the evaluation of the one of nanowires. The procedure is described in this paper.
ISSN:0884-2914
2044-5326
DOI:10.1557/jmr.2006.0345