Loading…
Assessing the effects of homofermentative Lactiplantibacillus plantarum K25 and heterofermentative Limosilactobacillus fermentum 13-1 on the flavor and functional characteristics of fermented milk analyzed by metabolomics approach
Lactic acid bacteria (LAB) play a significant role in milk fermentation; however, the impact of different LAB fermentation types on the metabolic characteristics of fermented milk remains poorly understood. In this study, homofermentative Lactoplantibacillus plantarum K25 and heterofermentative Limo...
Saved in:
Published in: | Italian journal of food science 2025-01, Vol.37 (1), p.150-181 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lactic acid bacteria (LAB) play a significant role in milk fermentation; however, the impact of different LAB fermentation types on the metabolic characteristics of fermented milk remains poorly understood. In this study, homofermentative Lactoplantibacillus plantarum K25 and heterofermentative Limosilactobacillus fermentum 13-1 were utilized in yogurt fermentation to produce fermented milk samples D-Lp and D-Lf, respectively, which were compared to the control yogurt sample (D) in terms of flavor and functional properties. Analysis revealed that strain K25 enhanced the production of milky aroma compounds such as 2,3-butanedione (8.82±1.13 ng/g) and hexanoic acid (28.94±1.39 ng/g), while strain 13-1 led to a decrease in 2,3-butanedione (0 ng/g) and acetoin (0 ng/g) levels along with an increase in the content of both acetic acid (23.58±1.99 ng/g) and ethanol (9.92±0.93 ng/g). Both strains demonstrated potential in reducing the bitterness of fermented milk by decreasing the levels of bitter amino acids and dipeptides in samples. Untargeted metabolomics analysis indicated that strain 13-1 induced more significant metabolic changes in fermented milk compared to strain K25. Both strains influenced various amino acid metabolisms, with strain K25 promoting lysine degradation and strain 13-1 enhancing tyro-sine metabolism. Furthermore, an increase in different types of bioactive compounds was observed in different fermented milk samples. This study enhances our understanding of LAB strain metabolism in fermented milk. |
---|---|
ISSN: | 1120-1770 1120-1770 |
DOI: | 10.15586/ijfs.v37i1.2779 |