Loading…
Structural Changes in Tritium-Substituted Polymeric Materials by Beta Decays: A Molecular Dynamics Study
The molecular mechanism through which how beta decays in tritium-substituted species damage DNA and polymeric materials is still unknown. Molecular dynamics simulations of hydrogen-removed polyethylene were performed to predict the structural change of the polyethylene chain after the substituted tr...
Saved in:
Published in: | Plasma and Fusion Research 2019/08/14, Vol.14, pp.3401106-3401106 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The molecular mechanism through which how beta decays in tritium-substituted species damage DNA and polymeric materials is still unknown. Molecular dynamics simulations of hydrogen-removed polyethylene were performed to predict the structural change of the polyethylene chain after the substituted tritium decays. We calculated the potential energy, the global orientational order parameter, and the average number of consecutive trans bonds. The results are that, the greater the number of removed hydrogen atoms, the higher the potential energy and the lower the value of the global orientational order parameter and the average number of consecutive trans bonds. Thus, after losing hydrogen, polyethylene becomes poorer in terms of both thermal and structural stabilities. |
---|---|
ISSN: | 1880-6821 1880-6821 |
DOI: | 10.1585/pfr.14.3401106 |